How do systems of hot super-Earths and sub-Neptunes form?

Sean Raymond
Laboratoire d’Astrophysique de Bordeaux
planetplanet.net

with Christophe Cossou, Andre Izidoro, Alessandro Morbidelli, Arnaud Pierens, Franck Hersant
Hot Super Earths

- **Exist around 30-50% of main-sequence stars** (Mayor et al 2011; Howard et al 2010, 2012; Fressin et al 2013; Petigura et al 2013)

- **Multiple systems** (e.g., Lovis et al 2011; Lissauer et al 2011a, many more)

- **Compact, non-resonant orbits** (Lissauer et al 2011b; Fabrycky et al 2014)

Raymond et al 2014 PP6 chapter; Kepler data from Batalha et al 2013 and Rowe et al 2014
Hot Super Earths

- Exist around 30-50% of main-sequence stars (Mayor et al. 2011; Howard et al. 2010, 2012; Fressin et al. 2013; Petigura et al. 2013)

- Multiple systems (e.g., Lovis et al. 2011; Lissauer et al. 2011a, many more)

- Compact, non-resonant orbits (Lissauer et al. 2011b; Fabrycky et al. 2014)

How did these systems form?
Stages of Planet Formation
Stages of Planet Formation
Grains
Stages of Planet Formation

- Grains
- Pebbles
Stages of Planet Formation

Grains

Pebbles

Planetesimals
Stages of Planet Formation

1. Grains
2. Pebbles
3. Planetesimals
4. Planetary Embryos
Stages of Planet Formation

- **Grains**
- **Pebbles**
- **Planetesimals**
- **Planetary Embryos**

While gas remains in disk.
Stages of Planet Formation

Grains → Pebbles → Planetesimals → Planetary Embryos

while gas remains in disk

Aerodynamic drift
Stages of Planet Formation

- Grains
- Planetesimals
- Planetary Embryos

Type I migration

while gas remains in disk

Aerodynamic drift
Stages of Planet Formation

- Grains
 - Pebbles
 - Planetesimals
 - Planetary Embryos

While gas remains in the disk, pebbles form into planetesimals, which then form planetary embryos. Gas accretion and type I migration play roles in this process.

Aerodynamic drift also occurs, affecting the motion of particles in the disk.
Stages of Planet Formation

- Grains
- Planetesimals
- Pebbles
- Planetary Embryos

Type 1 migration

while gas remains in disk

No more gas

gas accretion

Aerodynamic drift
Stages of Planet Formation

- **Grains**
- **Pebbles**
- **Planetesimals**
- **Planetary Embryos**

Types of migration:
- **Type 1 migration**

While gas remains in disk:
- **Accretion**

No more gas:
- **Last giant impacts**

Aerodynamic drift:
Stages of Planet Formation

- **Grains**
 - Type I migration
 - while gas remains in disk

- **Pebbles**
 - gas accretion

- **Planetesimals**
 - No more gas

- **Planetary Embryos**
 - super-Earths/mini-Neptunes

- **Last giant impacts**

Aerodynamic drift
<table>
<thead>
<tr>
<th>“Hot Earth” formation model</th>
<th>System Architecture</th>
<th>Hot Earth Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ Formation</td>
<td>Several hot Earths, spaced by ~40 R_{Hill}</td>
<td>Dry</td>
</tr>
<tr>
<td>Type 1 Migration</td>
<td>Chain of hot Earths in/near resonance</td>
<td>Icy</td>
</tr>
<tr>
<td>Giant planet shepherding</td>
<td>Hot Earth just inside strong giant planet resonances (2:1)</td>
<td>Moderate: few percent water by mass</td>
</tr>
<tr>
<td>Secular Res. shepherding</td>
<td>Hot Earths with two interacting giants</td>
<td>?</td>
</tr>
<tr>
<td>Photo-evaporated gas giant</td>
<td>Correlation with stellar age</td>
<td>Icy (giant planet core)</td>
</tr>
<tr>
<td>Tidal Circularization</td>
<td>Isolated hot Earth, eccentricity source</td>
<td>?</td>
</tr>
</tbody>
</table>

Raymond et al 2008, 2014
<table>
<thead>
<tr>
<th>"Hot Earth" form. model</th>
<th>System Architecture</th>
<th>Hot Earth Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ Formation</td>
<td>Several hot Earths, spaced by (~40 \ R_{\text{Hill}})</td>
<td>Dry</td>
</tr>
<tr>
<td>Type 1 Migration</td>
<td>Chain of hot Earths in/near resonance</td>
<td>Icy</td>
</tr>
</tbody>
</table>

Still viable

Raymond et al 2008, 2014
<table>
<thead>
<tr>
<th>“Hot Earth” form. model</th>
<th>System Architecture</th>
<th>Hot Earth Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Situ Formation</td>
<td>Several hot Earths, spaced by (\sim 40 , R_{\text{Hill}})</td>
<td>Dry</td>
</tr>
<tr>
<td>Type 1 Migration</td>
<td>Chain of hot Earths in/near resonance</td>
<td>Icy</td>
</tr>
</tbody>
</table>

Still viable

Raymond et al 2008, 2014
Orbital distance

1-4 R_{Earth}

Size

Hot super-Earths

Slide inspired by KITP discussions with Eric Ford, Geoff Marcy and Jack Liskeur
1. In-situ accretion

Size

1-4 R\text{Earth}

Orbital distance

Hot super-Earths

Slide inspired by KITP discussions with Eric Ford, Geoff Marcy and Jack Lissauer
Orbital distance

1. In-situ accretion

2. Radial (aerodynamic) drift

Size

1-4 R_{Earth}

Hot super-Earths

Slide inspired by KITP discussions with Eric Ford, Geoff Marcy and Jack Liseaur
1. In-situ accretion
2. Radial (aerodynamic) drift
3. Inward (type 1) migration

Slide inspired by KITP discussions with Eric Ford, Geoff Marcy and Jack Lissauer
1. In-situ accretion

2. Radial (aerodynamic) drift

3. Inward (type 1) migration

4. Mixed drift/migration

Size

Orbital distance

Hot super-Earths

1-4 R_{Earth}

Slide inspired by KITP discussions with Eric Ford, Geoff Marcy and Jack Linaeur
1. In-situ accretion: planets form fast in high-mass disks

Bolmont, Raymond et al 2014

~15 ME in inside 0.5 AU
Gaseous protoplanetary disks last a few Myr

Fraction of stars with disks (%) vs. Age (Myr)

$f_{\text{disk}} = \exp\left(-t/\tau_{\text{disk}}\right)$

$\tau_{\text{disk}} = 2.5 \text{ Myr}$

Mamajek 2009; Haisch et al. 2001; Hillenbrand 2008
Gaseous protoplanetary disks last a few Myr

If hot super-Earths form in-situ then gaseous disks must still be present when planets are big

\[
f_{\text{disk}} = \exp\left(-\frac{t}{\tau_{\text{disk}}}\right)
\]

\[
\tau_{\text{disk}} = 2.5 \text{ Myr}
\]

Gaseous disk causes orbital decay

Neptune

Earth

1000 km

1 km

“pebbles”

dust
Gaseous disk causes orbital decay

- Neptune
- Earth
- 1000 km
- 1 km
- "pebbles"
- Dust
Gaseous disk causes orbital decay

Type I migration

Aerodynamic drag

Neptune

Earth

1000 km

1 km

“pebbles”

dust
Planets that form in-situ should migrate
Even aerodynamic drag causes planets to drift.
Even aerodynamic drag causes planets to drift

Punchline: if hot super-Earths form in-situ then they must interact strongly with gaseous disk

Inamdar & Schlichting 2015
Even aerodynamic drag causes planets to drift.

Punchline: if hot super-Earths form in-situ then they must interact strongly with gaseous disk.

Because they drift or migrate, hot super-Earths can’t form “in-situ”!

Inamdar & Schlichting 2015
2. Radial drift of small bodies

3. Forming hot super-Earths by type 1 migration
3. Forming hot super-Earths by type 1 migration
3. Forming hot super-Earths by type 1 migration
Type 1 migration

- Inward or outward

- Timescale
 \(~10-100\) kyr
 (bigger=faster)

Migration stops at the inner edge of the disk

Migration stops at the inner edge of the disk

Migration stops at the inner edge of the disk

A type I migration map

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$

Cossou et al 2014;
see also Lyra et al 2010, Paardekooper et al 2011; Kretke & Lin 2012; Bitsch et al 2013, 2014ab
A type I migration map

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$

Cossou et al 2014;
see also Lyra et al 2010, Paardekooper et al 2011; Kretke & Lin 2012; Bitsch et al 2013, 2014ab
A type 1 migration map

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$

Cossou et al 2014;
see also Lyra et al 2010, Paardekooper et al 2011; Kretke & Lin 2012; Bitsch et al 2013, 2014ab
A type I migration map

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$

- Cossou et al 2014;
- see also Lyra et al 2010, Paardekooper et al 2011; Kretke & Lin 2012; Bitsch et al 2013, 2014ab
A type I migration map

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$

Cossou et al 2014;
see also Lyra et al 2010, Paardekooper et al 2011; Kretke & Lin 2012; Bitsch et al 2013, 2014ab
A type I migration map

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$

Cossou et al. 2014;
see also Lyra et al. 2010, Paardekooper et al. 2011; Kretke & Lin 2012; Bitsch et al. 2013, 2014ab
A type I migration map

Evolution of the total torque $\Gamma_{\text{tot}}/\Gamma_0$

Cossou et al 2014;
see also Lyra et al 2010, Paardekooper et al 2011; Kretke & Lin 2012; Bitsch et al 2013, 2014ab
Resonant chains usually go unstable as or after the gas disk dissipates.

Cossou, Raymond et al. 2014
Resonant chains usually go unstable as or after gas disk dissipates.

Punchline: most hot super-Earths that form by migration do not remain in resonant chains (Terquem & Papaloizou 2007; Goldreich & Schlichting 2014; Cossou et al 2014).

Migration during 3 Myr gas disk lifetime.
Why no hot super-Earths in Solar System?
Why no hot super-Earths in Solar System?

- Fast-forming gas giants can act as a barrier to inward-migrating super-Earths (Izidoro et al 2015)
Why no hot super-Earths in Solar System?

- Fast-forming gas giants can act as a barrier to inward migrating super-Earths (Izidoro et al 2015)
Why no hot super-Earths in Solar System?

- Fast-forming gas giants can act as a barrier to inward-migrating super-Earths (Izidoro et al. 2015)
- Prediction: systems of hot super-Earths should be anti-correlated with giant planets on more distant (1-5 AU) orbits.
Uncertainties in migration model
Uncertainties in migration model

- Initial conditions poorly constrained: how many cores? What sizes? How do they form?
Uncertainties in migration model

- Initial conditions poorly constrained: how many cores? What sizes? How do they form?

- Sensitivity of type I migration to disk conditions
Uncertainties in migration model

- Initial conditions poorly constrained: how many cores? What sizes? How do they form?
- Sensitivity of type I migration to disk conditions
- How efficient is atmospheric accretion during migration?
Uncertainties in migration model

- Initial conditions poorly constrained: how many cores? What sizes? How do they form?
- Sensitivity of type I migration to disk conditions
- How efficient is atmospheric accretion during migration?
- Strength and importance of turbulence (Laughlin et al 2004; Nelson 2005; Pierens et al 2012; Rein 2012)
Composition of planetary building blocks

Composition of planetary building blocks

Migration:

In-situ or drift: rocky planets

Migration: sample a range of compositions

Conclusions
Conclusions

- If hot super-Earths form in-situ they should interact strongly with gas disk and suffer migration and/or strong aerodynamic drag (so not “in-situ”)
Conclusions

• If hot super-Earths form in-situ they should interact strongly with gas disk and suffer migration and/or strong aerodynamic drag (so not “in-situ”)

• Pebble drift model: promising but needs further study
Conclusions

• If hot super-Earths form in-situ they should interact strongly with gas disk and suffer migration and/or strong aerodynamic drag (so not “in-situ”)

• Pebble drift model: promising but needs further study

• Migration: hot super-Earths and giant planet cores from same model

Cossou, Raymond et al 2014
Extra Slides
In-situ accretion

- Planets formed where you see them
- Planets remember their initial conditions (minimum-mass nebula model) and this reflects gas disk
- Migration of low-mass planets does not happen

Chiang & Laughlin 2013; see also Kuchner 2004
Minimum-mass disks in multi-planet systems

Median disk: $\Sigma \propto r^{-1.45}$

MMSN estimates

Raymond & Cossou 2014
Atmospheres

In-situ:
thin (~10^{-3}-10^{-2} or less) atmospheres
(Lee et al 2014; Inamdar & Schlichting 2015).

Migration: lose ~half of atmosphere per giant impact

Inamdar & Schlichting 2015
In-situ accretion

<table>
<thead>
<tr>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
</table>

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Ogihara et al submitted
In-situ accretion

Strengths

• Applies to Solar System terrestrial planets

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Ogihara et al submitted
In-situ accretion

Strengths

• Applies to Solar System terrestrial planets

• Can reproduce observed size, period ratio distributions

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Ogihara et al submitted
In-situ accretion

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Oghara et al submitted
In-situ accretion

Strengths
- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Ogihara et al submitted
In-situ accretion

Strengths

• Applies to Solar System terrestrial planets

• Can reproduce observed size, period ratio distributions

• Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Oghara et al submitted
In-situ accretion

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

- Requires very large inner disk masses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Oghara et al submitted
In-situ accretion

Strengths
- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses
- Requires very large inner disk masses
- Growth is so fast that gas drag and migration should be included

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Oghara et al submitted
In-situ accretion

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

- Requires very large inner disk masses
- Growth is so fast that gas drag and migration should be included
- Some planets closer to stars than dust sublimation radius (Swift et al 2013)

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Ogihara et al submitted
In-situ accretion

Strengths
- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses
- Requires very large inner disk masses
- Growth is so fast that gas drag and migration should be included
- Some planets closer to stars than dust sublimation radius (Swift et al 2013)
- Cannot produce planets with thick atmospheres (Hori & Ikoma 2012; Inamdar & Schlichting 2015; Lee et al 2014)

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013
Con: Raymond et al 2008, 2014; Schlichting 2014; Raymond & Cossou 2014; Schlaufman 2014; Inamdar & Schlichting 2015; Ogihara et al submitted
Pebble drift

Strengths

Weaknesses

Chatterjee & Tan 2014, 2015; Boley & Ford 2013; Hu et al 2014
Pebble drift

Strengths

- Makes sense in context of sequential growth from small bodies

Weaknesses

Chatterjee & Tan 2014, 2015; Boley & Ford 2013; Hu et al 2014
Pebble drift

Strengths

- Makes sense in context of sequential growth from small bodies
- Innermost planet masses scale \(\sim \) linearly with orbital radius

Weaknesses

Chatterjee & Tan 2014, 2015; Boley & Ford 2013; Hu et al 2014
Pebble drift

Strengths
- Makes sense in context of sequential growth from small bodies
- Innermost planet masses scale \(\sim\) linearly with orbital radius

Weaknesses
- Interaction between planets? Migration?

Chatterjee & Tan 2014, 2015; Boley & Ford 2013; Hu et al 2014
Pebble drift

Strengths

• Makes sense in context of sequential growth from small bodies

• Innermost planet masses scale \(\sim \) linearly with orbital radius

Weaknesses

• Interaction between planets? Migration?

• Needs further study

Chatterjee & Tan 2014, 2015; Boley & Ford 2013; Hu et al 2014
Migration

Strengths

Weaknesses

Migration

Strengths

• Can reproduce observed size, period ratio distributions

Weaknesses

Migration

Strengths

- Can reproduce observed size, period ratio distributions
- Consistent with wide range of planet atmospheric masses

Weaknesses

Migration

Strengths

• Can reproduce observed size, period ratio distributions

• Consistent with wide range of planet atmospheric masses

• Form giant planet cores in same framework as hot super-Earths

Weaknesses

Migration

Strengths

• Can reproduce observed size, period ratio distributions

• Consistent with wide range of planet atmospheric masses

• Form giant planet cores in same framework as hot super-Earths

Weaknesses

• Initial conditions unconstrained: how many cores? What sizes?

Migration

Strengths

• Can reproduce observed size, period ratio distributions

• Consistent with wide range of planet atmospheric masses

• Form giant planet cores in same framework as hot super-Earths

Weaknesses

• Initial conditions unconstrained: how many cores? What sizes?

• Sensitivity of type I migration to disk conditions

Migration

Strengths
- Can reproduce observed size, period ratio distributions
- Consistent with wide range of planet atmospheric masses
- Form giant planet cores in same framework as hot super-Earths

Weaknesses
- Initial conditions unconstrained: how many cores? What sizes?
- Sensitivity of type I migration to disk conditions
- Importance of turbulence (studies underway)

Case study: Kepler-444

Campante et al. 2015
Kepler-444

Table 4. Planetary and orbital parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Kepler-444b</th>
<th>Kepler-444c</th>
<th>Kepler-444d</th>
<th>Kepler-444e</th>
<th>Kepler-444f</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_0 (BJD − 2,454,833)</td>
<td>133.2599$^{+0.0018}_{-0.0018}$</td>
<td>131.5220$^{+0.0013}_{-0.0013}$</td>
<td>134.7869$^{+0.0015}_{-0.0015}$</td>
<td>135.0927$^{+0.0018}_{-0.0018}$</td>
<td>134.8791$^{+0.0011}_{-0.0011}$</td>
</tr>
<tr>
<td>P (days)</td>
<td>3.6001053$^{+0.0000083}_{-0.0000080}$</td>
<td>4.5458841$^{+0.0000070}_{-0.0000071}$</td>
<td>6.189392$^{+0.000012}_{-0.000012}$</td>
<td>7.743493$^{+0.000017}_{-0.000016}$</td>
<td>9.740486$^{+0.000013}_{-0.000013}$</td>
</tr>
<tr>
<td>R_p/R_*</td>
<td>0.00491$^{+0.00017}_{-0.00014}$</td>
<td>0.00605$^{+0.00025}_{-0.00020}$</td>
<td>0.00644$^{+0.00023}_{-0.00020}$</td>
<td>0.00664$^{+0.00016}_{-0.00014}$</td>
<td>0.00903$^{+0.00046}_{-0.00047}$</td>
</tr>
<tr>
<td>R_p/R_\oplus</td>
<td>0.40$^{+0.016}_{-0.014}$</td>
<td>0.497$^{+0.021}_{-0.017}$</td>
<td>0.530$^{+0.022}_{-0.019}$</td>
<td>0.546$^{+0.017}_{-0.015}$</td>
<td>0.741$^{+0.041}_{-0.040}$</td>
</tr>
<tr>
<td>b</td>
<td>0.40$^{+0.17}_{-0.25}$</td>
<td>0.42$^{+0.22}_{-0.27}$</td>
<td>0.53$^{+0.13}_{-0.23}$</td>
<td>0.29$^{+0.16}_{-0.17}$</td>
<td>0.79$^{+0.07}_{-0.13}$</td>
</tr>
<tr>
<td>$e \sin \omega$</td>
<td>0.01$^{+0.08}_{-0.12}$</td>
<td>0.18$^{+0.10}_{-0.15}$</td>
<td>0.03$^{+0.12}_{-0.12}$</td>
<td>$-0.008^{+0.040}_{-0.090}$</td>
<td>0.09$^{+0.20}_{-0.15}$</td>
</tr>
<tr>
<td>$e \cos \omega$</td>
<td>0.00$^{+0.20}_{-0.21}$</td>
<td>0.01$^{+0.28}_{-0.25}$</td>
<td>0.00$^{+0.21}_{-0.19}$</td>
<td>$-0.01^{+0.11}_{-0.21}$</td>
<td>$-0.06^{+0.19}_{-0.33}$</td>
</tr>
<tr>
<td>e</td>
<td>0.16$^{+0.21}_{-0.10}$</td>
<td>0.31$^{+0.12}_{-0.15}$</td>
<td>0.18$^{+0.16}_{-0.12}$</td>
<td>0.10$^{+0.20}_{-0.07}$</td>
<td>0.29$^{+0.20}_{-0.19}$</td>
</tr>
<tr>
<td>a/R_*</td>
<td>11.951$^{+0.046}_{-0.046}$</td>
<td>13.961$^{+0.053}_{-0.053}$</td>
<td>17.151$^{+0.066}_{-0.066}$</td>
<td>19.913$^{+0.076}_{-0.076}$</td>
<td>23.205$^{+0.089}_{-0.089}$</td>
</tr>
<tr>
<td>a (AU)</td>
<td>0.04178$^{+0.00079}_{-0.00079}$</td>
<td>0.04881$^{+0.00093}_{-0.00093}$</td>
<td>0.06000$^{+0.0011}_{-0.0011}$</td>
<td>0.0696$^{+0.0013}_{-0.0013}$</td>
<td>0.0811$^{+0.0015}_{-0.0015}$</td>
</tr>
<tr>
<td>i (deg)</td>
<td>88.0$^{+1.2}_{-0.6}$</td>
<td>88.2$^{+1.2}_{-1.0}$</td>
<td>88.16$^{+0.81}_{-0.55}$</td>
<td>89.13$^{+0.54}_{-0.52}$</td>
<td>87.96$^{+0.36}_{-0.31}$</td>
</tr>
</tbody>
</table>

Mass (ME) [assuming Earth-like composition]

0.035 0.075 0.095 0.11 0.33

Campante et al 2015
Migration timescales are long
Minimum-mass disk

Kepler-444

$\Sigma(r) = 12000 (r/1 \text{ AU})^1 \text{ g cm}^{-2}$
Accretion simulations

Kepler-444

Semimajor Axis (AU)
Planet size vs orbital distance

Kepler-444

Semimajor Axis (AU)

Radius (Earths)
Planetary spacing

Kepler-444

Mean inter-planetary orbital radius \((a_1a_2)^{1/2}\) (AU)

Orbital period ratio \(P_2/P_1\)
How did Kepler-444 form?
How did Kepler-444 form?

- Migration of large bodies is too slow
How did Kepler-444 form?

- Migration of large bodies is too slow
- In-situ growth works well....
How did Kepler-444 form?

- Migration of large bodies is too slow
- In-situ growth works well....
- But requires a very odd disk profile
How did Kepler-444 form?

- Migration of large bodies is too slow
- In-situ growth works well....
- But requires a very odd disk profile
- Best candidate: inward drift model