How do systems of hot super-Earths and sub-Neptunes form?

Sean Raymond Laboratoire d'Astrophysique de Bordeaux planetplanet.net

with Christophe Cossou, Andre Izidoro, Alessandro Morbidelli, Arnaud Pierens, Franck Hersant

Hot Super Earths

- Exist around 30-50% of mainsequence stars (Mayor et al 2011; Howard et al 2010, 2012; Fressin et al 2013; Petigura et al 2013)
- Multiple systems (e.g., Lovis et al 2011; Lissauer et al 2011a, many more)
- Compact, non-resonant orbits (Lissauer et al 2011b; Fabrycky et al 2014)

Raymond et al 2014 PP6 chapter; Kepler data from Batalha et al 2013 and Rowe et al 2014

Hot Super Earths

• Exist around 30-50% of main-

Sequence stars (Mayor et al 2011; Howard et al 2010, 2012; Fressin et al 2013; Petigura et al 2013)

- Multiple systems (e.g., Lovis et al 2011; Lissauer et al 2011a, many more)
- Compact, non-resonant orbits (Lissauer et al 2011b; Fabrycky et al 2014)

Raymond et al 2014 PP6 chapter; Kepler data from Batalha et al 2013 and Rowe et al 2014

How did these systems form?

Grains

Grains Pebbles

-

-

Planetesimals

-

Planetesimals

Planetary Embryos

Planetesimals

Planetary Embryos

while gas remains in disk

and the second

Planetesimals

Planetary Embryos

while gas remains in disk

-

Stages of Planet Formation -Aerodynamic Grains drift Pebbles Type I migration Planetesimals Planetary Embryos while gas remains in disk

Grains

Pebbles

Planetary Embryos

Planetesimals

while gas remains in disk

gas accretion

Aerodynamic drift

No more gas

gas accretion

Stages of Planet Formation Grains Type I migration Planetesimals

Planetary Embryos

while gas remains in disk No more gas

Last giant impacts

gas accretion

Stages of Planet Formation Aerodynamic Grains drift Pebbles Type I migration Planetesimals Planetary Embryos No more gas while gas Last giant remains in disk impacts super-Earths/ gas

accretion

mini-Neptunes

"Hot Earth" form. model	System Architecture	Hot Earth Composition
In Situ Formation	Several hot Earths, spaced by ~40 R _{Hill}	Dry
Type 1 Migration	Chain of hot Earths in/near resonance	lcy
Giant planet shepherding	Hot Earth just inside strong giant planet resonances (2:1)	Moderate: few percent water by mass
Secular Res. shepherding	Hot Earths with two interacting giants	?
Photo-evaporated gas giant	Correlation with stellar age	Icy (giant planet core)
Tidal Circularization	Isolated hot Earth, eccentricity source	?

Raymond et al 2008, 2014

"Hot Earth" form. model	System Architecture	Hot Earth Composition
In Situ Formation	Several hot Earths, spaced by ~40 R _{Hill}	Dry
Type 1 Migration	Chain of hot Earths in/near resonance	lcy

Still viable

Raymond et al 2008, 2014

"Hot Earth" form. model	System Architecture	Hot Earth Composition
In Situ Formation	Several hot Earths, spaced by ~40 R _{Hill}	Dry
Type 1 Migration	Chain of hot Earths in/near resonance	lсу

Still viable

Raymond et al 2008, 2014

Hot super-Earths

Orbital distance

Slide inspired by KITP discussions with Eric Ford, Geoff Marcy and Jack Lisaeur

I. In-situ accretion: planets form fast in high-mass disks

Bolmont, Raymond et al 2014

Gaseous protoplanetary disks last a few Myr

Mamajek 2009; Haisch et al 2001, Hillenbrand 2008

Gaseous protoplanetary disks last a few Myr

Mamajek 2009; Haisch et al 2001, Hillenbrand 2008

Planets that form in-situ should migrate

Even aerodynamic drag causes planets to drift

Inamdar & Schlichting 2015

Even aerodynamic drag causes planets to drift

Inamdar & Schlichting 2015

Even aerodynamic drag causes planets to drift

Inamdar & Schlichting 2015
2. Radial drift of small bodies

Chatterjee & Tan 2014, 2015; Hu et al 2014; Boley & Ford 2013; Boley et al 2014

3. Forming hot super-Earths by type I migration

3. Forming hot super-Earths by type 1 migration

3. Forming hot super-Earths by type 1 migration

Type I migration

Inward or outward

Timescale
~10-100 kyr
(bigger=faster)

Armitage 2011

Migration stops at the inner edge of the disk

Masset et al (2006)

Migration stops at the inner edge of the disk

Masset et al (2006)

Migration stops at the inner edge of the disk

Masset et al (2006)

Evolution of the total torque Γ_{tot}/Γ_0

Semi-major axis (AU)

Cossou et al 2014;

Evolution of the total torque Γ_{tot}/Γ_0

Cossou et al 2014;

Evolution of the total torque Γ_{tot}/Γ_0

Semi-major axis (AU)

Cossou et al 2014;

Evolution of the total torque Γ_{tot}/Γ_0

Cossou et al 2014;

Evolution of the total torque Γ_{tot}/Γ_0

Semi-major axis (AU)

Cossou et al 2014;

Evolution of the total torque Γ_{tot}/Γ_0

Cossou et al 2014;

Evolution of the total torque Γ_{tot}/Γ_0

Semi-major axis (AU)

Cossou et al 2014;

Cossou, Raymond et al 2014

Cossou, Raymond et al 2014

Resonant chains usually go unstable as or after gas disk dissipates

Cossou, Raymond et al 2014

Resonant chains usually go unstable as or after gas disk dissipates

Cossou, Raymond et al 2014

Why no hot super-Earths in Solar System?

Why no hot super-Earths in Solar System?

 Fast-forming gas giants can act as a barrier to inward-migrating super-Earths (Izidoro et al 2015)

Why no hot super-Earths in Solar System?

• Fast-form to inward 2015)

as a barrier hs (Izidoro et al

Why no hot super-Earths in Solar System?

Prediction: systems of hot super-Earths should be anti-correlated with giant planets on more distant (I-5 AU) orbits

个

 Initial conditions poorly constrained: how many cores? What sizes? How do they form?

- Initial conditions poorly constrained: how many cores? What sizes? How do they form?
- Sensitivity of type I migration to disk conditions

- Initial conditions poorly constrained: how many cores? What sizes? How do they form?
- Sensitivity of type I migration to disk conditions
- How efficient is atmospheric accretion during migration?

- Initial conditions poorly constrained: how many cores? What sizes? How do they form?
- Sensitivity of type I migration to disk conditions
- How efficient is atmospheric accretion during migration?
- Strength and importance of turbulence (Laughlin et al 2004; Nelson 2005; Pierens et al 2012; Rein 2012)

Composition of planetary building blocks

von Dishoeck et al 2014, PP6 chapter; based on Morbidelli et al (2012) and Raymond et al (2004)

Composition of planetary building blocks

von Dishoeck et al 2014, PP6 chapter; based on Morbidelli et al (2012) and Raymond et al (2004)
If hot super-Earths form in-situ they should interact strongly with gas disk and suffer migration and/or strong aerodynamic drag (so not "in-situ")

- If hot super-Earths form in-situ they should interact strongly with gas disk and suffer migration and/or strong aerodynamic drag (so not "in-situ")
- Pebble drift model: promising but needs further study

- If hot super-Earths form in-situ they should interact strongly with gas disk and suffer migration and/or strong aerodynamic drag (so not "in-situ")
- Pebble drift model: promising but needs further study
- Migration: hot super-Earths and giant planet cores from same model

Extra Slides

- Planets formed where you see them
- Planets remember their initial conditions (minimum-mass nebula model) and this reflects gas disk
- Migration of lowmass planets does not happen

Chiang & Laughlin 2013; see also Kuchner 2004

Minimum-mass disks in multiplanet systems

Raymond & Cossou 2014

Atmospheres

In-situ: thin (~10⁻³-10⁻² or less) atmospheres (Lee et al 2014; Inamdar & Schlichting 2015).

Migration: lose ~half of atmosphere per giant impact

Inamdar & Schlichting 2015

Strengths

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

Weaknesses

• Applies to Solar System terrestrial planets

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

Weaknesses

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

Requires very large inner disk masses

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

- Requires very large inner disk masses
- Growth is so fast that gas drag and migration should be included

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Weaknesses

- Requires very large inner disk masses
- Growth is so fast that gas drag and migration should be included
- Some planets closer to stars than dust sublimation radius (Swift et al 2013)

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Strengths

- Applies to Solar System terrestrial planets
- Can reproduce observed size, period ratio distributions
- Matches distribution of multiple-transiting systems and their mutual inclinations (Hansen & Murray 2013)

Pro: Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Petrovich et al 2013

Weaknesses

- Requires very large inner disk masses
- Growth is so fast that gas drag and migration should be included
- Some planets closer to stars than dust sublimation radius (Swift et al 2013)
- Cannot produce planets with thick atmospheres (Hori & Ikoma 2012; Inamdar & Schlichting 2015; Lee et al 2014)

Strengths

Weaknesses

Strengths

 Makes sense in context of sequential growth from small bodies Weaknesses

dead

pebble drift

Strengths

- Makes sense in context of sequential growth from small bodies
- Innermost planet masses scale ~linearly with orbital radius

Weaknesses

dead zone

pebble drift

Strengths

- Makes sense in context of sequential growth from small bodies
- Innermost planet masses scale ~linearly with orbital radius

Weaknesses

dead zone

 Interaction between planets? Migration?

Strengths

- Makes sense in context of sequential growth from small bodies
- Innermost planet masses scale ~linearly with orbital radius

Weaknesses

dead zone

- Interaction between planets? Migration?
- Needs further study

Strengths

Weaknesses

Strengths

Weaknesses

 Can reproduce observed size, period ratio distributions

Weaknesses

Strengths

- Can reproduce observed size, period ratio distributions
- Consistent with wide range of planet atmospheric masses

Strengths

- Can reproduce observed size, period ratio distributions
- Consistent with wide range of planet atmospheric masses
- Form giant planet cores in same framework as hot super-Earths

Terquem & Papaloizou 2007; Cresswell & Nelson 2007, 2008; McNeil & Nelson 2010; Ida & Lin 2010; Rein 2012; Paardekooper et al 2013Cossou et al 2013, 2014; Raymond & Cossou 2014; Hands et al 2014; Mahajan & Wu 2014

Weaknesses

Migration

Strengths

- Can reproduce observed size, period ratio distributions
- Consistent with wide range of planet atmospheric masses
- Form giant planet cores in same framework as hot super-Earths

Weaknesses

 Initial conditions unconstrained: how many cores? What sizes?

Migration

Strengths

- Can reproduce observed size, period ratio distributions
- Consistent with wide range of planet atmospheric masses
- Form giant planet cores in same framework as hot super-Earths

Weaknesses

- Initial conditions unconstrained: how many cores? What sizes?
- Sensitivity of type I migration to disk conditions

Migration

Strengths

- Can reproduce observed size, period ratio distributions
- Consistent with wide range of planet atmospheric masses
- Form giant planet cores in same framework as hot super-Earths

Weaknesses

- Initial conditions unconstrained: how many cores? What sizes?
- Sensitivity of type I migration to disk conditions
- Importance of turbulence (studies underway)

Case study: Kepler-444

Campante et al 2015

Kepler-444

Table 4. Planetary and orbital parameters.

Parameter	Kepler-444b	Kepler-444c	Kepler-444d	Kepler-444e	Kepler-444f
T_0 (BJD-2,454,833)	$133.2599\substack{+0.0018\\-0.0018}$	$131.5220\substack{+0.0013\\-0.0013}$	$134.7869\substack{+0.0015\\-0.0015}$	$135.0927\substack{+0.0018\\-0.0018}$	$134.8791\substack{+0.0011\\-0.0011}$
P (days)	$3.6001053\substack{+0.0000083\\-0.0000080}$	$4.5458841\substack{+0.0000070\\-0.0000071}$	$6.189392\substack{+0.000012\\-0.000012}$	$7.743493\substack{+0.000017\\-0.000016}$	$9.740486\substack{+0.000013\\-0.000013}$
$R_{ m p}/R_{\star}$	$0.00491\substack{+0.00017\\-0.00014}$	$0.00605\substack{+0.00025\\-0.00017}$	$0.00644\substack{+0.00023\\-0.00020}$	$0.00664\substack{+0.00016\\-0.00014}$	$0.00903\substack{+0.00046\\-0.00047}$
$R_{ m p}/R_{\oplus}$	$0.403\substack{+0.016\\-0.014}$	$0.497\substack{+0.021\\-0.017}$	$0.530\substack{+0.022\\-0.019}$	$0.546\substack{+0.017\\-0.015}$	$0.741\substack{+0.041\\-0.040}$
b	$0.40\substack{+0.17\\-0.25}$	$0.42\substack{+0.22\\-0.27}$	$0.53\substack{+0.13 \\ -0.23}$	$0.29\substack{+0.16\\-0.17}$	$0.79\substack{+0.07\\-0.13}$
$e\sin\omega$	$0.01\substack{+0.08\\-0.12}$	$0.18\substack{+0.10 \\ -0.15}$	$0.03\substack{+0.12 \\ -0.12}$	$-0.008\substack{+0.040\\-0.090}$	$0.09\substack{+0.20\\-0.15}$
$e\cos\omega$	$0.00\substack{+0.20\\-0.21}$	$0.01\substack{+0.28\\-0.25}$	$0.00\substack{+0.21\\-0.19}$	$-0.01\substack{+0.11\\-0.21}$	$-0.06\substack{+0.19\\-0.33}$
e^{a}	$0.16\substack{+0.21 \\ -0.10}$	$0.31\substack{+0.12 \\ -0.15}$	$0.18\substack{+0.16 \\ -0.12}$	$0.10\substack{+0.20 \\ -0.07}$	$0.29\substack{+0.20 \\ -0.19}$
a/R_{\star}	$11.951\substack{+0.046\\-0.046}$	$13.961\substack{+0.053\\-0.053}$	$17.151\substack{+0.066\\-0.066}$	$19.913\substack{+0.076\\-0.076}$	$23.205\substack{+0.089\\-0.089}$
a (AU)	$0.04178\substack{+0.00079\\-0.00079}$	$0.04881\substack{+0.00093\\-0.00093}$	$0.0600\substack{+0.0011\\-0.0011}$	$0.0696\substack{+0.0013\\-0.0013}$	$0.0811\substack{+0.0015\\-0.0015}$
$i \ (deg)$	$88.0\substack{+1.2\\-0.6}$	$88.2^{+1.2}_{-1.0}$	$88.16\substack{+0.81\\-0.55}$	$89.13\substack{+0.54 \\ -0.52}$	$87.96\substack{+0.36\\-0.31}$
Mass (ME) [assuming Earth-like composition]	0.035	0.075	0.095	0.11	0.33

Campante et al 2015

Migration timescales are long

Accretion simulations

Planet size vs orbital distance

• Migration of large bodies is too slow

- Migration of large bodies is too slow
- In-situ growth works well....

- Migration of large bodies is too slow
- In-situ growth works well....
- But requires a very odd disk profile

- Migration of large bodies is too slow
- In-situ growth works well....
- But requires a very odd disk profile
- Best candidate: inward drift model