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Hot Super Earths
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“Hot Earth” 
form. model System Architecture Hot Earth 

Composition
In Situ 

Formation
Several hot Earths, spaced by ~40 R

Hill Dry

Type 1 
Migration

Chain of hot Earths in/near resonance Icy

Giant planet 
shepherding

Hot Earth just inside strong giant planet resonances (2:1) Moderate: few percent water by mass

Sec. Res. 
shepherding

Hot Earths with two interacting giants ?

Photo-
evaporation

Correlation with stellar age Icy (giant planet core)

Tidal 
Circularization

Isolated hot Earth, eccentricity source ?

Raymond, Barnes & Mandell 2008



“Hot Earth” 
form. model System Architecture Hot Earth 

Composition
In Situ 

Formation
Several hot Earths, spaced by ~40 R

Hill Dry

Type 1 
Migration

Chain of hot Earths in/near resonance Icy

Still viable

Raymond, Barnes & Mandell 2008
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(minimum-mass nebula 
model) and this reflects 
gas disk

• Migration of low-mass 
planets does not happen

• Inner parts of disk are 
enhanced in solids by 
inward drift/migration

• Drift/migration occurs 
either at very small 
(~cm) or very large 
(>Mars) sizes

• Drift/migration stops at 
pressure bumps or inner 
edge of disk or when gas 
dissipates
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Raymond et al 2008

6.6 ME
10.6 ME 10.9 ME
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Problems with in-situ accretion
• Requires disks that are 10s to 100s of times more massive than 

expected from observations (typical Mdisk/Mstar ~ 1%;  e.g., Andrews et al 
2009)

• If “minimum-mass extrasolar nebulae” (Chiang & Laughlin 2013) truly 
represent their parent gaseous disks, then:

• More than half cannot be explained by current disk 
physics (Raymond & Cossou 2014). 

• Inconsistent with occurrence rate of gas giant planets 
(Schlaufman 2014)

• Accretion of large planets troublesome because feeding zones are 
too narrow (Schlichting 2014) 

• Planets form very fast; not reasonable to assume gas-driven 
migration doesn’t happen (Raymond et al 2008)

• Many planets are located interior to the dust sublimation radius (Swift 
et al 2013)

• Difficult to retain atmospheres more massive than 10
-3
 or so of 

solid mass (Inamdar & Schlichting 2015)
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Type 1 migration

• Inward or 
outward

• Timescale 
~10-100 kyr 
(bigger=faster)

Golreich & Tremaine 1980; Ward 1986, 1997; Tanaka et al 2002; Kley & Crida 2008; Paardekooper et al 2010, 2011; Pierens et al 2013; Lega et al 2014; Bitsch et al 2014

Credit: A. Pierens



Armitage 2011



A type 1 migration “map”

Cossou et al 2014; see also Kretke & Lin 2012; Bitsch et al 2013, 2014abc
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Cossou et al 2014

Dissipation of gas disk 
often triggers late 

instabilities that break 
resonances



Radial drift of small bodies

Chatterjee & Tan 2014, 2015; Hu et al 2014; Boley & Ford 2014



Can atmospheres differentiate 
between drift and migration?

Inamdar & Schlichting 2015

In-situ or drift: 
thin (~10-3 or less) 

atmospheres.  

Migration: a range 
of possible gas 

masses. If start from 
Neptunes and 
undergo few 

collisions, expect 
few percent
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Issues and open questions for 
migration/drift model

• Initial conditions

• How many embryos?  

• How massive? 

• Where do they form first?

• Stopping mechanism for migration/drift

• Inner edge of disk?  

• Pressure bump?  

• Gas dispersal?

• Importance of Turbulence during migration (e.g., Pierens et al 
2011, Rein 2012)

• Accretion of atmospheres during migration
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Why no hot super-Earths in 
Solar System?

• Fast-forming gas giants can act as a barrier 
to inward-migrating super-Earths (Izidoro et al 
2015)

Prediction: systems of hot super-Earths 
should be anti-correlated with giant planets 

on more distant (1-5 AU) orbits
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Terquem & Papaloizou 2007; Raymond et al 2008, 2014; Hansen & Murray 2012, 2013; Chiang & Laughlin 2013; Raymond & Cossou 2014; Cossou et al 2014; 
Inamdar & Schlichting 2015; Schlichting 2015
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Conclusions

• In-situ model has big problems in explaining 
the observed hot super-Earths

• Migration: hot super-Earths and giant planet 
cores from same model

• Inward drift model: promising but needs 
further study

• Planets with 1+% atmospheres must form 
by migration model (I think)
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Kepler-444

Campante et al 2015

Mass (ME)        0.035         0.075        0.095         0.11        0.33  
[assuming 
Earth-like]



Migration timescales are long



Minimum-mass disk
Kepler-444
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Accretion simulations
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Planet size vs orbital 
distance

Kepler-444
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Planetary spacing
Kepler-444
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How did Kepler-444 
form?

• Migration of large bodies is too slow

• In-situ growth works well....

• But requires a very odd disk profile

• Best candidate: inward drift model


