How do hot super-Earths and mini-Neptunes form?

Sean Raymond
Laboratoire d'Astrophysique de
Bordeaux

Collaborators: C. Cossou, A. Izidoro, A. Morbidelli, A. Pierens, F. Hersant, R. Barnes, A. Mandell

 $R = 1-4 R_{Earth}$ M ~ 1-30 M_{Earth}

Hot Super Earths

- Exist around 30-50% of MS
 Stars (Mayor et al 2011; Howard et al 2010, 2012; Fressin et al 2013; Petigura et al)
- Multiple systems (e.g., Lovis et al 2011; Lissauer et al 2011)
- Compact, non-resonant orbits (Lissauer et al 2011b)

Raymond et al PP6 review; Kepler data from Batalha et al 2013 and Rowe et al 2014

Hot Super Earths

- Exist around 30-50% of MS

 Stars (Mayor et al 2011; Howard et al 2010, 2012; Fressin et al 2013; Petigura et al)
- Multiple systems (e.g., Lovis et al 2011; Lissauer et al 2011)
- Compact, non-resonant orbits (Lissauer et al 2011b)

Raymond et al PP6 review; Kepler data from Batalha et al 2013 and Rowe et al 2014

"Hot Earth" form. model	System Architecture	Hot Earth Composition
In Situ Formation	Several hot Earths, spaced by ~40 R Hill	Dry
Type 1 Migration	Chain of hot Earths in/near resonance	lcy
Giant planet shepherding	Hot Earth just inside strong giant planet resonances (2:1)	Moderate: few percent water by mass
Sec. Res. shepherding	Hot Earths with two interacting giants	?
Photo- evaporation	Correlation with stellar age	lcy (giant planet core)
Tidal Circularization	Isolated hot Earth, eccentricity source	?

"Hot Earth" form. model	System Architecture	Hot Earth Composition
In Situ Formation	Several hot Earths, spaced by ~40 R Hill	Dry
Type 1 Migration	Chain of hot Earths in/near resonance	lcy

Still viable

In-situ accretion Drift/Migration

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

Drift/Migration

Planets formed where you see them

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

Drift/Migration

- Planets formed where you see them
- Planets "remember"
 their initial conditions
 (minimum-mass nebula
 model) and this reflects
 gas disk

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

Drift/Migration

- Planets formed where you see them
- Planets "remember"
 their initial conditions
 (minimum-mass nebula
 model) and this reflects
 gas disk
- Migration of low-mass planets does not happen

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

Drift/Migration

- Planets formed where you see them
- Planets "remember"
 their initial conditions
 (minimum-mass nebula
 model) and this reflects
 gas disk
- Migration of low-mass planets does not happen

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

- Planets formed where you see them
- Planets "remember"
 their initial conditions
 (minimum-mass nebula
 model) and this reflects
 gas disk
- Migration of low-mass planets does not happen

Drift/Migration

 Inner parts of disk are enhanced in solids by inward drift/migration

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

- Planets formed where you see them
- Planets "remember"
 their initial conditions
 (minimum-mass nebula
 model) and this reflects
 gas disk
- Migration of low-mass planets does not happen

Drift/Migration

- Inner parts of disk are enhanced in solids by inward drift/migration
- Drift/migration occurs either at very small (~cm) or very large (>Mars) sizes

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

- Planets formed where you see them
- Planets "remember"
 their initial conditions
 (minimum-mass nebula
 model) and this reflects
 gas disk
- Migration of low-mass planets does not happen

Raymond et al 2008, Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Petrovich et al 2013

Drift/Migration

- Inner parts of disk are enhanced in solids by inward drift/migration
- Drift/migration occurs either at very small (~cm) or very large (>Mars) sizes
- Drift/migration stops at pressure bumps or inner edge of disk or when gas dissipates

Hot super-Earths: in-situ accretion

Hot super-Earths: in-situ accretion

Orbital distance

• Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)

- Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)
- If "minimum-mass extrasolar nebulae" (Chiang & Laughlin 2013) truly represent their parent gaseous disks, then:

- Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)
- If "minimum-mass extrasolar nebulae" (Chiang & Laughlin 2013) truly represent their parent gaseous disks, then:
 - More than half cannot be explained by current disk physics (Raymond & Cossou 2014).

- Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)
- If "minimum-mass extrasolar nebulae" (Chiang & Laughlin 2013) truly represent their parent gaseous disks, then:
 - More than half cannot be explained by current disk physics (Raymond & Cossou 2014).
 - Inconsistent with occurrence rate of gas giant planets (Schlaufman 2014)

- Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)
- If "minimum-mass extrasolar nebulae" (Chiang & Laughlin 2013) truly represent their parent gaseous disks, then:
 - More than half cannot be explained by current disk physics (Raymond & Cossou 2014).
 - Inconsistent with occurrence rate of gas giant planets (Schlaufman 2014)
- Accretion of large planets troublesome because feeding zones are too narrow (Schlichting 2014)

- Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)
- If "minimum-mass extrasolar nebulae" (Chiang & Laughlin 2013) truly represent their parent gaseous disks, then:
 - More than half cannot be explained by current disk physics (Raymond & Cossou 2014).
 - Inconsistent with occurrence rate of gas giant planets (Schlaufman 2014)
- Accretion of large planets troublesome because feeding zones are too narrow (Schlichting 2014)
- Planets form very fast; not reasonable to assume gas-driven migration doesn't happen (Raymond et al 2008)

- Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)
- If "minimum-mass extrasolar nebulae" (Chiang & Laughlin 2013) truly represent their parent gaseous disks, then:
 - More than half cannot be explained by current disk physics (Raymond & Cossou 2014).
 - Inconsistent with occurrence rate of gas giant planets (Schlaufman 2014)
- Accretion of large planets troublesome because feeding zones are too narrow (Schlichting 2014)
- Planets form very fast; not reasonable to assume gas-driven migration doesn't happen (Raymond et al 2008)
- Many planets are located interior to the dust sublimation radius (Swift et al 2013)

- Requires disks that are 10s to 100s of times more massive than expected from observations (typical Mdisk/Mstar ~ 1%; e.g., Andrews et al 2009)
- If "minimum-mass extrasolar nebulae" (Chiang & Laughlin 2013) truly represent their parent gaseous disks, then:
 - More than half cannot be explained by current disk physics (Raymond & Cossou 2014).
 - Inconsistent with occurrence rate of gas giant planets (Schlaufman 2014)
- Accretion of large planets troublesome because feeding zones are too narrow (Schlichting 2014)
- Planets form very fast; not reasonable to assume gas-driven migration doesn't happen (Raymond et al 2008)
- Many planets are located interior to the dust sublimation radius (Swift et al 2013)
- Difficult to retain atmospheres more massive than 10 or so of solid mass (Inamdar & Schlichting 2015)

Hot super-Earths: migration

Hot super-Earths: migration

Orbital distance

Type I migration

Inward or outward

Timescale~10-100 kyr(bigger=faster)

A type I migration "map"

Radial drift of small bodies

Chatterjee & Tan 2014, 2015; Hu et al 2014; Boley & Ford 2014

Can atmospheres differentiate between drift and migration?

In-situ or drift: thin (~10⁻³ or less) atmospheres.

Migration: a range of possible gas masses. If start from Neptunes and undergo few collisions, expect few percent

Inamdar & Schlichting 2015

- Initial conditions
 - How many embryos?
 - How massive?
 - Where do they form first?

- Initial conditions
 - How many embryos?
 - How massive?
 - Where do they form first?
- Stopping mechanism for migration/drift
 - Inner edge of disk?
 - Pressure bump?
 - Gas dispersal?

- Initial conditions
 - How many embryos?
 - How massive?
 - Where do they form first?
- Stopping mechanism for migration/drift
 - Inner edge of disk?
 - Pressure bump?
 - Gas dispersal?
- Importance of Turbulence during migration (e.g., Pierens et al 2011, Rein 2012)

- Initial conditions
 - How many embryos?
 - How massive?
 - Where do they form first?
- Stopping mechanism for migration/drift
 - Inner edge of disk?
 - Pressure bump?
 - Gas dispersal?
- Importance of Turbulence during migration (e.g., Pierens et al 2011, Rein 2012)
- Accretion of atmospheres during migration

 Fast-forming gas giants can act as a barrier to inward-migrating super-Earths (Izidoro et al 2015)

• Fast-form to inward 2015)

as a barrier hs (Izidoro et al

Prediction: systems of hot super-Earths should be anti-correlated with giant planets on more distant (I-5 AU) orbits

Orbital distance

Orbital distance

Orbital distance

Orbital distance

Orbital distance

In-situ accretion

Inward migration

	In-situ accretion	Inward migration
Period ratio distribution		

	In-situ accretion	Inward migration
Period ratio distribution		
Inclination distribution		

	In-situ accretion	Inward migration
Period ratio distribution		
Inclination distribution		
Composition	Dry	Mostly Icy

	In-situ accretion	Inward migration	
Period ratio distribution			
Inclination distribution			
Composition	Dry	Mostly Icy	
Requirements	Very massive inner disks with steep density profiles	Growth of Mars- to Earth-sized cores at several AU	

	In-situ accretion	Inward migration	
Period ratio distribution			
Inclination distribution			
Composition	Dry	Mostly Icy	
Requirements	Very massive inner disks with steep density profiles	Growth of Mars- to Earth-sized cores at several AU	
Atmospheres	Hard to maintain larger than ~10 ⁻³ (Inamdar & Schlichting 2015)	Expect a wide range of values	

	In-situ accretion	Inward migration	
Period ratio distribution			
Inclination distribution			
Composition	Dry	Mostly Icy	
Requirements	Very massive inner disks with steep density profiles	Growth of Mars- to Earth-sized cores at several AU	
Atmospheres	Hard to maintain larger than ~10 ⁻³ (Inamdar & Schlichting 2015)	Expect a wide range of values	
Other	Type 1 migration cannot exist!	Also explains giant planet cores	

	In-situ accretion	Inward migration	
Period ratio distribution			
Inclination distribution			
Composition	Dry	Mostly Icy	
Requirements	Very mage inner disks with promes	Growth Jars- to Earth-Gres at several AU	
Atmospheres	Hard to my in larger than ~10 mdar & Schlichting 2015)	Expect a grange of	
Other	Type 1 might cannot	Also e giant plees	

 In-situ model has big problems in explaining the observed hot super-Earths

- In-situ model has big problems in explaining the observed hot super-Earths
- Migration: hot super-Earths and giant planet cores from same model

- In-situ model has big problems in explaining the observed hot super-Earths
- Migration: hot super-Earths and giant planet cores from same model
- Inward drift model: promising but needs further study

- In-situ model has big problems in explaining the observed hot super-Earths
- Migration: hot super-Earths and giant planet cores from same model
- Inward drift model: promising but needs further study
- Planets with I+% atmospheres must form by migration model (I think)

Case study: Kepler-444

Campante et al 2015

Kepler-444

Table 4. Planetary and orbital parameters.

Parameter	Kepler-444b	Kepler-444c	Kepler-444d	Kepler-444e	Kepler-444f
T_0 (BJD-2,454,833)	$133.2599^{+0.0018}_{-0.0018}$	$131.5220^{+0.0013}_{-0.0013}$	$134.7869^{+0.0015}_{-0.0015}$	$135.0927^{+0.0018}_{-0.0018}$	$134.8791^{+0.0011}_{-0.0011}$
P (days)	$3.6001053^{+0.0000083}_{-0.0000080}$	$4.5458841^{+0.0000070}_{-0.0000071}$	$6.189392^{+0.000012}_{-0.000012}$	$7.743493^{+0.000017}_{-0.000016}$	$9.740486^{+0.000013}_{-0.000013}$
$R_{ m p}/R_{\star}$	$0.00491^{+0.00017}_{-0.00014}$	$0.00605^{+0.00025}_{-0.00017}$	$0.00644^{+0.00023}_{-0.00020}$	$0.00664^{+0.00016}_{-0.00014}$	$0.00903^{+0.00046}_{-0.00047}$
$R_{ m p}/R_{\oplus}$	$0.403^{+0.016}_{-0.014}$	$0.497^{+0.021}_{-0.017}$	$0.530^{+0.022}_{-0.019}$	$0.546^{+0.017}_{-0.015}$	$0.741^{+0.041}_{-0.040}$
b	$0.40^{+0.17}_{-0.25}$	$0.42^{+0.22}_{-0.27}$	$0.53^{+0.13}_{-0.23}$	$0.29^{+0.16}_{-0.17}$	$0.79^{+0.07}_{-0.13}$
$e\sin\omega$	$0.01^{+0.08}_{-0.12}$	$0.18^{+0.10}_{-0.15}$	$0.03^{+0.12}_{-0.12}$	$-0.008\substack{+0.040 \\ -0.090}$	$0.09^{+0.20}_{-0.15}$
$e\cos\omega$	$0.00^{+0.20}_{-0.21}$	$0.01^{+0.28}_{-0.25}$	$0.00^{+0.21}_{-0.19}$	$-0.01^{+0.11}_{-0.21}$	$-0.06^{+0.19}_{-0.33}$
$e^{\mathbf{a}}$	$0.16^{+0.21}_{-0.10}$	$0.31^{+0.12}_{-0.15}$	$0.18^{+0.16}_{-0.12}$	$0.10^{+0.20}_{-0.07}$	$0.29^{+0.20}_{-0.19}$
a/R_{\star}	$11.951^{+0.046}_{-0.046}$	$13.961^{+0.053}_{-0.053}$	$17.151^{+0.066}_{-0.066}$	$19.913^{+0.076}_{-0.076}$	$23.205^{+0.089}_{-0.089}$
a (AU)	$0.04178^{+0.00079}_{-0.00079}$	$0.04881^{+0.00093}_{-0.00093}$	$0.0600^{+0.0011}_{-0.0011}$	$0.0696^{+0.0013}_{-0.0013}$	$0.0811^{+0.0015}_{-0.0015}$
i (deg)	$88.0^{+1.2}_{-0.6}$	$88.2^{+1.2}_{-1.0}$	$88.16^{+0.81}_{-0.55}$	$89.13^{+0.54}_{-0.52}$	$87.96^{+0.36}_{-0.31}$
Mass (ME) [assuming Earth-like]	0.035	0.075	0.095	0.11	0.33

Campante et al 2015

Migration timescales are long

Minimum-mass disk

Accretion simulations

Planet size vs orbital distance

Planetary spacing

Migration of large bodies is too slow

- Migration of large bodies is too slow
- In-situ growth works well....

- Migration of large bodies is too slow
- In-situ growth works well....
- But requires a very odd disk profile

- Migration of large bodies is too slow
- In-situ growth works well....
- But requires a very odd disk profile
- Best candidate: inward drift model