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Disks around young stars







Habitable planets need water!
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Most stars have planets 
(e.g., Cassan et al 2012)
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Formation of the inner Solar 
System



Total asteroid mass: 
~10-3 Earth masses
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Water content of planetary building blocks

von Dishoeck et al 2014
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Hit-and-run collisions

Asphaug et al 2006



The Moon formed from debris in the last giant 
impact on the proto-Earth



Terrestrial 
planet formation 
with angry gas 

giants
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Formation 
of systems 

of hot 
super-Earths
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Extra slides



How many planets are out there?



The Hubble Space 
Telescope stared at 

a dark patch of sky for 
15 days straight





í100s of billions stars in our galaxy



í100s of billions stars in our galaxy
í100s of billions of galaxies in the Universe



í100s of billions stars in our galaxy
í100s of billions of galaxies in the Universe
íProbably quintillions of planets 

(1,000,000,000,000,000,000)
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Masset & Snellgrove 2001; 
Morbidelli & Crida 2007; 
Pierens & Nelson 2008;  

Crida et al 2009;  
Pierens & Raymond 2011; 

Pierens et al 2014
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Walsh et al 2011, Nature, 475, 206

The Grand Tack


