

Sean Raymond Laboratoire d'Astrophysique de Bordeaux, France

> planetplanet.net rayray.sean@gmail.com

Credit: Dullemond

Credit: Dullemond

Credit: Dullemond

Disks around young stars

Habitable planets need water!

Most stars have planets

(e.g., Cassan et al 2012)

Formation of the inner Solar System

Sequence of events

Sequence of events

Gas giants form fast (a few million years)

Sequence of events

Gas giants form fast (a few million years)

Earth formed slow (~100 million years)

Water content of planetary building blocks

Need eccentric orbits for collisions to happen

Semimajor axis a = average distance
between planet, star

Eccentricity e =
 measure of how
 elliptical an orbit is

Need eccentric orbits for collisions to happen

Semimajor axis a = average distance
between planet, star

Eccentricity e =
 measure of how
 elliptical an orbit is

Raymond et al 2006

Raymond et al 2006

Hit-and-run collisions

Asphaug et al 2006

The Moon formed from debris in the last giant impact on the proto-Earth

Giant exoplanets

Wright et al 2011

Giant exoplanets

Wright et al 2011

Giant-exoplanets

Wright et al 2011

Planet-planet scattering

Simulation Time: 00.0 years

Credit: Eric Ford

Planet-planet scattering

Simulation Time: 00.0 years

Credit: Eric Ford

Formation of systems of hot super-Earths

Sizes of Planet Candidates

Totals as of November, 2013

Model I. Hot super-Earths formed where they are: DRY

Model I. Hot super-Earths formed where they are: DRY

Angry gas giants

Angry gas giants

Angry gas giants

Angry gas giants

Hot super-Earths

Angry gas giants

Hot super-Earths

Angry gas giants

Hot super-Earths

Extra slides

How many planets are out there?

The Hubble Space Telescope stared at a dark patch of sky for 15 days straight

- *100s of billions stars in our galaxy
- *100s of billions of galaxies in the Universe
 - *Probably quintillions of planets (1,000,000,000,000,000,000)

Jupiter and Saturn in the gaseous disk

Time

Jupiter and Saturn in the gaseous disk

Masset & Snellgrove 2001; Morbidelli & Crida 2007; Pierens & Nelson 2008; Crida et al 2009; Pierens & Raymond 2011; Pierens et al 2014

slide by Kevin Walsh

Hydrodynamical simulation with Jup, Sat accreting gas from disk (Pierens & Raymond 2011)

Hydrodynamical simulation with Jup, Sat accreting gas from disk (Pierens & Raymond 2011)

The Grand Tack model

T = 0.0 ky

Walsh, Morbidelli, Raymond, O'Brien, Mandell 2011, Nature, 475, 206

The Grand Tack model

T = 0.0 ky

Walsh, Morbidelli, Raymond, O'Brien, Mandell 2011, Nature, 475, 206

The Grand Tack

