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Quasiparticle
 

Self-Consistent GW 
Approximation: Strengths and Weaknesses

Mark van Schilfgaarde
Arizona State University

The Quasiparticle
 

self-consistent GW
 

approximation−QSGW
•PRL93, 126406;

 
PRL 96, 226402; PRB76, 165106.

What it is, how it differs from standard sc-GW
Range of applicability, and limits to precision
How well does QSGW work in complex systems?

“Complex”
 

can refer to 
Many-atom, inhomogeneous structures, e.g surfaces 

•Is success in simple systems replicated?
•Limited by algorithm efficiency and computer power

Complexities originating from electron correlations.
•Depends on “smallness”

 
of approximations in QSGW .



2

GW: A Perturbation theory

Start from some non-interacting hamiltonian
 

H0 .
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LDA-based GW Approximation
GW is a perturbation theory

 
around some non-interacting 

hamiltonian
 

H0 .  Usually H0 = H LDA . Then GW →
 

G LDAW LDA

←
Bands, magnetic 
moments in MnAs

 are poor.
Many other problems; 

← NiO
 

only slightly improved over LDA

see PRB B74, 245125 (2006)

Most 4f systems 
similarly have a 

narrow 4f band at 
EF

CoO
 

is still a metal→
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Quasiparticle
 

self-consistent GW Approximation

A new, first-principles approach to solving the 
Schrodinger equation within Hedin’s GW theory.

Principle : Can we find a good starting point H0 in 
place of HLDA ?  How to find the best possible

 
H0 ?

Requires a prescription for minimizing the 
difference between the full hamiltonian

 
H and H0 .

QSGW : a
 

self-consistent perturbation theory
 where self-consistency determines the best

 
H0 

(within the GW
 

approximation) PRL 96, 226402 (2006)
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QSGW: a self-consistent perturbation theory
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in such a way as to minimize
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Q:
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QSGW cycle

( ) ( )0, ,xc xcQPGWV G G V⎯⎯⎯→ ⎯⎯→Σ
A B

SC

Step A: Generate Σ(ω)
 

from Vxc using the GWA.
Step B: Find a static and hermitian

 
Vxc as close as possible

 
to 

Σ(ω), by minimizing N (next slide)
Use Vxc as trial Vxc and iterate A,B

 
until self-consistency

 Should be
 

independent of starting point (not guaranteed) 

Step 0: Generate trial Vxc from LDA, LDA+U, or …

†
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A:
 

Define a
 

norm functional
 

N that is a measure of the 
difference between

 
ψ[H] and ψ[H0 ]



7

( ) ( )0 0
QPGWG G G⎯⎯⎯→ ⎯⎯→

A B

At self-consistency, εi of G matches
 

εi of G0 (real parts) 
Self-consistency is thus a means to determine the best 
possible starting hamiltonian

 
H0 (within the GWA).

See PRB76, 165106 (2007).
Shishkin, Marsman, and Kresse:  improved W by adding 
(approximate) ladder diagrams (PRL99, 246403 (2007))

Minimize N (approximately) by choosing

( )xc 1 |Re ( ) ( ) |
2 i i j j

ij
V E Eψ ψ= 〈 Σ + Σ 〉∑

{ }2 ext H xc
i i iV V V εψ ψ=−∇ + + +

Defines a noninteracting
 

effective potential with Hartree-
 Fock

 
structure:
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Noninteracting

GW

G0W0

True self-consistent GW looks good as formal theory:
Based on Luttinger-Ward functional. 
Keeps symmetry for G
Conserving approximation

But poor in practice, even for 
the electron gas

“Z-factor cancellation”
 

is not 
satisfied (next slides)

QSGW is not true self-consistent GW

1 1
( )H extT V VG iGG W v GiGW

ω
ε −

− + + +Σ
⇒ Π = − ⇒ = ⇒ ⇒ =Σ =

True self-consistent GW (scGW)

B. Holm and U. von Barth, 
PRB57, 2108 (1998)
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“While a non-self-consistent
 

… GW treatment 
reduces occupied bandwidths by 10–30% …, 
selfconsistency

 
leads to overall increased bandwidths.  

Subsequent inclusion of the next-order
 

term in 
GWGWG restores reduced bandwidths, which agree 
well with experiment.”

Higher order terms in Jellium
E. Shirley compared sc-GWGWG

 
to sc-GW

 
in Jellium: 

(Phys. Rev. B 54, 7758 (1996))
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Residual of this pole (loss of QP weight) is reduced by Z

Write G as

Also,

Therefore, 

Z-factor cancellation in Σ
Exact Σ=iGWΓ

 
.  Suppose W is exact.   Then
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W=(1−Πv)−1v is not exact, either.
A similar analysis for proper polarization

 
Π .

Z-factor cancellation in
 

Π

(See Appendix A
 

in PRB76, 165106 (2007)).
0 0 (incoherent part)iGG iG GΠ = − Γ ≈ − +

In the exact fully self-consistent theory, Z-factors 
cancel QP-like contribution in complicated ways.
Self-consistent GW

 
neglects Γ, so no Z-factor 

cancellation ⇒ results rather poor.   Higher order 
diagrams required to restore Z-factor cancellation.
Complexity avoided

 
by doing perturbation theory around 

a noninteracting
 

H0 : convergence more rapid
 

for a given 
level of approximation.



12

Na as approximate realization of HEG
Holm and von Barth compared 
scGW

 
to G0W0 in the 

homogeneous electron gas. 

Noninteracting

G0W0

GW

PRB57, 2108
(1998)

The G0W0 bandwidth narrows
 by ~10%.

Shirley showed that the next order term, 
sc:GW+GWGWG essentially restores the G0W0 

bandwidth PRB 54, 7758 (1996) in true scGW.
QSGW predicts the Na

 
bandwidth to narrow 

relative to LDA by ~10%, in agreement with PE 
and standing wave measurements.

The scGW 
bandwidth widens

 by ~20%.
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Critical points, m* in
 

sp bonded
 

systems

CP’s

 

always slightly overestimated

 

(  ); m* mostly quite good

Γ−Γ L−L X−X

m*

E0E1 E2

Oxides
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QSGW in elemental d systems (mostly) 

 

Ni (majority) * d band exchange 
splitting

 
and 

bandwidths are 
systematically  
improved relative 
to LDA.

* magnetic moments: 
small systematic 
errors (slightly 
overestimated)

* Generally good 
agreement with 
photoemission

−8

−4

0

4

8

12

L Γ X W
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QSGW theory in 4f systems

f subsystem reasonably 
well described.
Errors very systematic:

Occupied f states 
reasonably close to 
photoemission (missing 
multiplet

 

structure)

Unoccupied f states 
systematically too high.  
Generally true in 4f 
systems.

spd subsystem also well 
described: hole 
concentrations, masses

PRB 76, 165126 (2007)
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QSGW applied to Pu
5f bandwidth renormalized by ~2x.  Implies one-body, 
noninteracting

 
hamiltonian

 
quite different than LDA…

QSGW                 LDA

Important implications 
for LDA+U, LDA+DMFT

Low-temperature specific heat
 

much changed from LDA. 
still poor agreement w/ expt.  Outside 1-body? (spin fluct)
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Systematics
 

of Errors

Unoccupied states universally too high
~0.2 eV for sp semicond; 
<~1eV for itinerant d SrTiO3, TiO2
>~1eV for less itinerant d NiO
>~3 eV for f Gd,Er,Yb

Peaks in Im ε(ω) also too high

ε∞ universally 
20% too small

0 10 20 30
0

1

2

3

4

5

ZnO

with LFC
without LFC
expt.

I
m
 ε

ω(eV)

Magnetic 
moments slightly 
overestimated
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Likely origin of Errors

Exact theory: Σ=iGWΓ. Requires that both Γand W be exact.  
Two sources of error:
1. Main error: originates from RPA 

approximation to Π≅G0 G0 :         
ε∞

 

is underestimated in insulators    
by a universal factor 0.8.  Thus, 
W(ω=0) is too large, roughly by a 
factor 1/0.8.

Accounts for most errors in 
QP levels, e.g. semiconductor 
gaps (see Shiskin et al, PRL 99, 
246403)

2. Secondary: missing vertex 
corrections Γ. 
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NiO: illustration of errors in polarization Π
Bands of both sp and d character are present
Scaling

 
Σ

 
by 0.8

 
shifts sp- and d-

 
characters differently.

Expt

QSGW

Σ×0.8

SW spectra
 

from poles of transverse susceptibility
 

are in 
good agreement with experiment.

LDA

QSGW
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Graphene

LDA
 

dispersions at K 
much softer than 
ARPES.
e-ph renormalization 
worsens agreement.
QSGW a little too 
steep: correction of 
Π

 
should resolve

skip
(Ohta et al,  PRL 98, 206802 (2007))
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Errors caused by missing vertex Γ

Cu Ag Au

Localized d bands consistently 
~0.4 eV

 
higher

 
than expt. 

Eu
 

4f ~0.7 eV
 

too high
Cannot be explained in terms of 
errors in Π(q,ω)

 
.

QSGW
EuO

Eu

 

d
Eu

 

f

O 2p
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Γ
 

At the Si/SiO2

 

Interface 

−0.24
+0.35
+0.60 

PRL 100, 
186401

−0.21
+0.51
+0.72 

Authors show effect of Γ
 

on δEv , δEc separately not small.  
Approximately similar for Si, SiO2 …

 
is it general? 

Γ
 

may be important in correcting GW offsets.
Caveat:  our own all-electron GW and QSGW calculations 
show quite different

 
δEv , δEc distribution in Si.

GW, GWΓ
 

and QSGW applied to Si, SiO2

 

, and 
junction. Look at bulk compounds first.
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The Si/SiO2

 

Valence Band Offset 

Their GW and GWΓ
 

results are very similar, rather good.  
QSGW VBM a little worse:  VBM(QSGW) = VBM(Expt) + 0.5 eV 
Caveat:

 
all electron results certain to be different (cf

 
Si).  

Known problems
 

with PP-based GW [Gómez-Abal,  Li, 
Scheffler, Ambrosch-Draxl, Phys. Rev. Lett. 101, 106404] 

Authors found that δ(VBM)=(VBM)QP −
 

(VBM)DFT calculated 
for bulk applies to interface: i.e. interface calculation not 
necessary to get QP correction to band offset, 

PRL 100, 
186401

skip
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NiO
 

vs
 

CoO
NiO: QSGW misses satellites

 
and subgap

 
excitations

 
arising 

from internal dd transitions.  
But QP picture dominates electronic structure; these 
effects are small perturbations to QP picture.

Expt

QSGW

Σ×0.8
NiO: Scaling

 
Σ

 
by 0.8 

yields very good 
agreement with both PE 
and BIS measurements.
CoO,FeO,Ce2

 

O3

 

: 
situation less rosy.  
Substantial disagreement 
with BIS.   Splitting 
within a single spin 
channel.

Expt

QSGW

Σ×0.8
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Conclusions

"

•
 

The QSGW approximation
-

 
Self-consistent

 
perturbation theory; self-consistency 

used to minimize the size of the (many-body) perturbation
-

 

optimum partitioning between H0 and ΔV=H−H0 .
-

 
QSGW has some formal justification and it works very 

well
 

in practice!  A true ab
 

initio theory that does not 
depend on any scheme based on ansatz, e.g. LDA, LDA+U
-

 
Reliably treats variety of properties in a wide range of 

materials: The errors are systematic and understandable.

QSGW is well positioned 
to become a reliable 
framework,

 
which can 

address both many-atom
 and correlated systems
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