Quasiparticle Self-Consistent GW Approximation: Strengths and Weaknesses

Mark van Schilfgaarde Arizona State University

The Quasiparticle self-consistent GW approximation-Q5GW

- •PRL93, 126406; PRL 96, 226402; PRB76, 165106.
- ❖What it is, how it differs from standard sc-GW
- *Range of applicability, and limits to precision
- *How well does QSGW work in complex systems?
 - "Complex" can refer to
 - > Many-atom, inhomogeneous structures, e.g surfaces
 - ·Is success in simple systems replicated?
 - ·Limited by algorithm efficiency and computer power
 - > Complexities originating from electron correlations.
 - •Depends on "smallness" of approximations in QSG_1W .

GW: A Perturbation theory

Start from some non-interacting hamiltonian H_0 .

1.
$$H_0 = -\frac{\nabla^2}{2} + V_{eff}(\mathbf{r}, \mathbf{r}') \Rightarrow G_0 = \frac{1}{\omega - H_0}$$
 Example: $= H^{LDA}$

2.
$$\Pi = -iG_0 \times G_0$$
 RPA Polarization function

3.
$$W = \varepsilon^{-1}v = (1 - \Pi v)^{-1}v$$
$$v(\mathbf{r}, \mathbf{r}') = |\mathbf{r} - \mathbf{r}'|^{-1}$$

Dynamically screened exchange $v(\mathbf{r},\mathbf{r}') = |\mathbf{r}-\mathbf{r}'|^{-1}$ (Recover HF theory by $\varepsilon \rightarrow 1$)

4.
$$\Sigma = iG_0W$$
 Self-energy $\Sigma = \mathcal{L}_G$

$$H(\mathbf{r},\mathbf{r}',\omega) = -\frac{\nabla^2}{2} + V^H(\mathbf{r}) + V^{ext}(\mathbf{r}) + \Sigma(\mathbf{r},\mathbf{r}',\omega)$$

LDA-based GW Approximation

GW is a perturbation theory around some non-interacting hamiltonian H_0 . Usually $H_0 = H^{LDA}$. Then $GW \to G^{LDA}W^{LDA}$

Quasiparticle self-consistent GW Approximation

A new, first-principles approach to solving the Schrodinger equation within Hedin's GW theory.

Principle: Can we find a good starting point H_0 in place of $H^{\rm LDA}$? How to find the best possible H_0 ?

Requires a prescription for minimizing the difference between the full hamiltonian H and H_0 .

QSGW: a self-consistent perturbation theory where self-consistency determines the best H_0 (within the GW approximation) PRL 96, 226402 (2006)

QSGW: a self-consistent perturbation theory

Partition H into H_0 + ΔV and (noninteracting + residual) in such a way as to minimize ΔV :

$$G_{0} = \frac{1}{\omega - H_{0}} \xrightarrow{GWA} G = \frac{1}{\omega - (H_{0} + \Delta V(\omega))}$$
$$(\omega - (H_{0} + \Delta V(\omega)))G(\omega) = \delta(\mathbf{r} - \mathbf{r}')$$

We seek the $G_0(\omega)$ that most closely satisfies Eqn. of motion

$$(\omega - (H_0 + \Delta V(\omega)))G_0(\omega) \approx \delta(\mathbf{r} - \mathbf{r}')$$
$$\to \Delta V(\omega)G_0(\omega) \approx 0$$

If the GWA is meaningful, $G_0 \approx G$ Q: How to find G_0 that minimizes $\Delta V G_0$?

QSGW cycle

A: Define a norm functional N that is a measure of the difference between $\psi[H]$ and $\psi[H_0]$

$$N = \frac{1}{2} \sum_{ij} \left| \left\langle \psi_j \left| \Delta V(\varepsilon_i) \right| \psi_i \right\rangle \right|^2 + \left| \left\langle \psi_j \left| \Delta V^{\dagger}(\varepsilon_i) \right| \psi_i \right\rangle \right|^2$$

Step 0: Generate trial V^{xc} from LDA, LDA+U, or ...

Step A: Generate $\Sigma(\omega)$ from V^{xc} using the GWA.

Step B: Find a static and hermitian V^{xc} as close as possible to $\Sigma(\omega)$, by minimizing N (next slide)

Use V^{xc} as trial V^{xc} and iterate A,B until self-consistency Should be independent of starting point (not guaranteed)

$$G_0 \xrightarrow{GW} G \xrightarrow{QP} G_0$$

Minimize N (approximately) by choosing

$$V^{\text{xc}} = \frac{1}{2} \sum_{ij} \langle \psi_i | \text{Re} \left(\Sigma(E_i) + \Sigma(E_j) \right) | \psi_j \rangle$$

Defines a noninteracting effective potential with Hartree-Fock structure:

Fock structure:
$$\left\{-\nabla^2 + V^{\text{ext}} + V^{\text{H}} + V^{\text{xc}}\right\} \psi_i = \varepsilon_i \psi_i$$

At self-consistency, ε_i of G matches ε_i of G_0 (real parts)

Self-consistency is thus a means to determine the best possible starting hamiltonian H_0 (within the GWA).

See PRB76, 165106 (2007).

Shishkin, Marsman, and Kresse: improved W by adding (approximate) ladder diagrams (PRL99, 246403 (2007))

QSGW is not true self-consistent GW

True self-consistent GW (scGW)

$$G \Rightarrow \Pi = -iGG \Rightarrow W = \varepsilon^{-1}v \Rightarrow \Sigma = iGW \Rightarrow G = \frac{1}{\omega - (T + V^H + V^{ext} + \Sigma)}$$

True self-consistent GW looks good as formal theory:

- → Based on Luttinger-Ward functional.
- \rightarrow Keeps symmetry for G
- → Conserving approximation

But poor in practice, even for the electron gas

"Z-factor cancellation" is not satisfied (next slides)

B. Holm and U. von Barth, PRB57, 2108 (1998)

Higher order terms in Jellium

E. Shirley compared sc-GWGWG to sc-GW in Jellium: (Phys. Rev. B 54, 7758 (1996))

$$-i\Sigma(12) = \frac{5}{1} + \frac{5}{1} + \frac{5}{1} + \frac{3}{1} + \frac{2}{1}$$

"While a non-self-consistent ... GW treatment reduces occupied bandwidths by 10-30% ..., selfconsistency leads to overall increased bandwidths. Subsequent inclusion of the next-order term in GWGWG restores reduced bandwidths, which agree well with experiment."

Z-factor cancellation in Σ

Exact $\Sigma = iGW\Gamma$. Suppose W is exact. Then

$$G_{0} = \frac{1}{\omega - H_{0} + i\delta}$$

$$G = \frac{1}{\omega - H_{0} - \left[-V^{xc} + \Sigma(\omega_{0}) + (\partial \Sigma / \partial \omega)_{\omega_{0}}(\omega - \omega_{0})\right] + i\delta}$$

$$Z = (1 - \partial \Sigma / \partial \omega)^{-1}$$

Residual of this pole (loss of QP weight) is reduced by Z

Write
$$G$$
 as $G = ZG^0 + (\text{incoherent part})$
Also, $\Gamma = 1 - \partial \Sigma / \partial \omega = Z^{-1}$ for $q', \omega' \to 0$

Wherefore,
$$GW\Gamma \approx G^0W + (\text{incoherent part}) \qquad q \omega \xrightarrow[q-q']{G} \qquad \Gamma$$

Z-factor cancellation in Π

 $W=(1-\Pi v)^{-1}v$ is not exact, either.

A similar analysis for proper polarization Π .

$$\Pi = -iGG\Gamma \approx -iG_0G_0 + (incoherent part)$$

(See Appendix A in PRB76, 165106 (2007)).

In the exact fully self-consistent theory, Z-factors cancel QP-like contribution in complicated ways.

Self-consistent GW neglects Γ , so no Z-factor cancellation \Rightarrow results rather poor. Higher order diagrams required to restore Z-factor cancellation.

Complexity avoided by doing perturbation theory around a noninteracting H_0 : convergence more rapid for a given level of approximation.

Na as approximate realization of HEG

Holm and von Barth compared scGW to G^0W^0 in the homogeneous electron gas.

The G^0W^0 bandwidth *narrows* by ~10%.

6

4

0

The scGW bandwidth widens by ~20%.

Shirley showed that the next order term, sc:GW+GWGWG essentially restores the G^0W^0 bandwidth PRB 54, 7758 (1996) in true scGW.

QSGW predicts the Na bandwidth to *narrow* relative to LDA by ~10%, in agreement with PE and standing wave measurements.

Critical points, m* in sp bonded systems

CP's always slightly overestimated (•); m* mostly quite good

QSGW in elemental d systems (mostly)

Ni (majority)

* Generally good agreement with photoemission O

* magnetic moments: small systematic errors (slightly overestimated) * d band exchange splitting and bandwidths are systematically improved relative to LDA.

QSGW theory in 4f systems

PRB 76, 165126 (2007)

f subsystem reasonably well described. Errors very systematic:

Occupied f states reasonably close to photoemission (missing multiplet structure)

Unoccupied f states systematically too high. Generally true in 4f systems.

spd subsystem also well described: hole concentrations, masses 5

QSGW applied to Pu

5f bandwidth renormalized by ~2x. Implies one-body, noninteracting hamiltonian quite different than LDA...

Important implications for LDA+U, LDA+DMFT

Low-temperature specific heat much changed from LDA. still poor agreement w/ expt. Outside 1-body? (spin fluct)

Systematics of Errors

✓ Unoccupied states universally too high

 \sim 0.2 eV for *sp* semicond;

 \checkmark ~1eV for itinerant d SrTiO₃, TiO₂

 \checkmark >~1eV for less itinerant d NiO

 \checkmark >~3 eV for f Gd, Er, Yb

 \checkmark Peaks in Im ε(ω) also too high

√20% too small

✓ Magnetic moments slightly overestimated

ω(eV)

Likely origin of Errors

Exact theory: $\Sigma = iGW\Gamma$. Requires that both Γ and W be exact. Two sources of error:

1. Main error: originates from RPA approximation to $\Pi \cong G_0G_0$: ϵ_{∞} is underestimated in insulators by a universal factor 0.8. Thus, $W(\omega=0)$ is too large, roughly by a factor 1/0.8.

Accounts for most errors in QP levels, e.g. semiconductor gaps (see Shiskin et al, PRL 99, 246403)

2. Secondary: missing vertex corrections Γ .

NiO: illustration of errors in polarization Π

Bands of both sp and d character are present Scaling Σ by 0.8 shifts sp- and d- characters differently.

SW spectra from poles of transverse susceptibility are in good agreement with experiment.

skip

Graphene

Errors caused by missing vertex Γ

Γ At the Si/SiO₂ Interface

Band Offsets at the Si/SiO₂ Interface from Many-Body Perturbation Theory

R. Shaltaf, G.-M. Rignanese, X. Gonze, Feliciano Giustino, and Alfredo Pasquarello^{2,3}

PRL **100**, 186401

GW, $GW\Gamma$ and QSGW applied to Si, SiO₂, and junction. Look at bulk compounds first.

	Si			c-SiO ₂			s-SiO ₂		
	GW	$GW\Gamma$	QSGW	GW	$GW\Gamma$	QSGW	GW	$GW\Gamma$	QSGW
δE_v	-0.4	+0.1	-0.6	-1.9	-1.3	-2.8 + 1.3 + 4.1	-1.9	-1.3	-2.8
δE_c	+0.2	+0.7	+0.2	+1.5	+1.8	+1.3	+1.4	+1.8	+1.1
δE_g	+0.6	+0.6	+0.8	+3.4	+3.1	+4.1	+3.3	+3.1	+3.9

-0.24 +0.35 +0.60 -0.21 +0.51 +0.72

Authors show effect of Γ on δE_v , δE_c separately not small. Approximately similar for Si, SiO₂ ... is it general? Γ may be important in correcting GW offsets. Caveat: our own all-electron GW and QSGW calculations

show quite different δE_v , δE_c distribution in Si.

24

skip

The Si/SiO₂ Valence Band Offset

Authors found that $\delta(VBM)=(VBM)^{QP}-(VBM)^{DFT}$ calculated for bulk applies to interface: i.e. interface calculation not necessary to get QP correction to band offset,

PRL **100**, 186401

TABLE III. Quasiparticle band offsets (eV) for cubic and strained SiO₂ using GW, $GW\Gamma$, and QSGW.

7				Cubi	c	Strained			- 29
	Model	DFT	GW	$GW\Gamma$	QSGW	GW	$GW\Gamma$	QSGW	Expt.
VBO	Ι	2.6	4.1	4.0	4.8	4.1	4.0	4.8	4.3
	II	2.5	4.0	3.9	4.7	4.0	3.9	4.7	
CBO	I	1.6	2.9	2.7	2.7	2.8	2.7	2.5	3.1
	II	1.8	3.1	2.9	2.9	3.0	2.9	2.7	

Their GW and $GW\Gamma$ results are very similar, rather good. QSGW VBM a little worse: VBM(QSGW) = VBM(Expt) + 0.5 eV Caveat: all electron results certain to be different (cf Si). Known problems with PP-based GW [Gómez-Abal, Li, Scheffler, Ambrosch-Draxl, Phys. Rev. Lett. 101, 106404]

NiO vs CoO

NiO: QSGW misses satellites and subgap excitations arising from internal dd transitions.

But QP picture dominates electronic structure; these effects are small perturbations to QP picture.

NiO: Scaling Σ by 0.8 yields very good agreement with both PE and BIS measurements.

CoO, FeO, Ce₂O₃: situation less rosy. Substantial disagreement with BIS. Splitting within a single spin channel.

Conclusions

- The QSGW approximation
 - Self-consistent perturbation theory; self-consistency used to minimize the size of the (many-body) perturbation
 - optimum partitioning between H_0 and $\Delta V = H H_0$.
 - QSGW has some formal justification and it works very well in practice! A true ab initio theory that does not depend on any scheme based on ansatz, e.g. LDA, LDA+U
 - Reliably treats variety of properties in a wide range of materials: The errors are systematic and understandable.

QSGW is well positioned to become a reliable framework, which can address both many-atom and correlated systems

