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Continuum Mechanics: what is it?
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An attempt to describe a complex many-body system in terms of a few collective 
variables -- density and current -- without reference to the underlying atomic 
structure.  Classical examples are “Hydrodynamics” and  “Elasticity”.
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Can continuum mechanics be applied to 
quantum many-body systems?

In principle, yes!

Heisenberg Equations of Motion:
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The Runge-Gross theorem asserts that P(r,t) is a unique 
functional of the current density (and of the initial quantum 
state) -- thus closing the equations of motion.
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Continuum mechanics in the linear response 
regime
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“Linear response regime” means that 
we are in a non-stationary state that is 
“close” to the ground-state, e.g. 
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The displacement field associated with this excitation is
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up to a proportionality constant.



Continuum mechanics in the linear 
response regime - continued

Excitation energies in linear continuum mechanics are obtained 
by Fourier analyzing the displacement field 
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However, the correspondence between excited states and 
displacement fields can be many-to-one.  Different excitations
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can have the same displacement 
fields (up to a constant).  This 
implies that the equation for the 
displacement field, while linear, 
cannot be rigorously cast as a 
conventional eigenvalue 
problem.



1) Go to the “comoving frame” -- an accelerated reference 
frame that moves with the electron liquid so that the density 
is constant and the current density  is zero everywhere. 

2) In the comoving frame assume that the wave function 
remain time-independent -  the time evolution of the system 
being entirely governed by the changing metric. We call this 
assumption the “elastic approximation”. 

This approximation is expected to work best in strongly 
correlated systems, and is fully justified for (1) High-
frequency limit  (2) One-electron systems.

The Idea:

Continuum Mechanics in the Elastic Approximation



Elastic  equation of motion: an elementary derivation
Start from the equation for the linear response of the current:
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j(ω) = n0A1 (ω) +K(ω) ⋅A1 (ω)

and go to the high frequency limit:

Inverting Eq. (1) to first order we get
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Finally, using 
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The elastic equation of motion
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Euclidean space
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The elastic equation of motion: discussion

2. The eigenvalue problem is hermitian and yields a complete 
set of orthonormal eigenfunction.  Orthonormality defined with 
respect to a modified scalar product with weight n0(r). 
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uλ∫ (r) ⋅uλ' (r)n0(r)dr = δλλ'

3. The positivity of the eigenvalues (=excitation energies) is 
guaranteed by the stability of the ground-state

4. All the excitations of one-particle systems are exactly 
reproduced.

1. The linear functional F[u] is calculable from the exact one- 
and two body density matrices of the ground-state. The latter 
can be obtained from Quantum Monte Carlo calculations.



Let uλ(r) be a solution of the elastic eigenvalue problem with 
eigenvalue  ωλ

2.  The following relation exists between ωλ
2 and 

the exact excitation energies: 
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Exact excitation 
energies

Elastic QCM
A group of levels may collapse into one
but the spectral weight is preserved
within each group! 
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Similar, but not identical  
to Bijl-Feynman theory:

€ 

ωL (q) =
q2

2S(q)€ 

Ψq ∝ ˆ n q Ψ0

€ 

uTq r( ) = ˆ t qe
iq ⋅r

€ 

ωT
2 q( ) =

2t(n)
3

q2

+
ω p

2

n
dq'
2π( )3 ˆ q × ˆ q '2 S q−q'( ) − S q'( )[ ]∫

TRANSVERSAL

static structure 
factor



€ 

m˙ ̇ u = −u ′ ′ V 0 +
(3T0 ′ u ′ ) 

n0

−
(n0 ′ ′ u ′ ′ ) 

4n0

+ d ′ x ∫ K(x, x ') u(x) − u(x ')[ ]

  

€ 

T0(x) = 1
2
∂x∂ ′ x ρ(x, ′ x ) x= x '

One−particle
density matrix

     
−

′ ′ n 0(x)
4

  

€ 

K(x, x ') = ρ2(x, ′ x )
Two−particle
density matrix

     
w' '(x − x')
Second derivative 
     of interaction

     

a fourth-order integro-differential equation

From Quantum 
Monte Carlo
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 u = 0
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ωn = ±nω0

un (x) = Hn−1(x)
Eigenvalues:

Eigenfunctions:

This equation can be solved analytically by expanding u(x) in a power series of x and 
requiring that the series terminates after a finite number of terms (thus ensuring zero 
current at infinity).
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Parabolic trap
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Relative Motion         
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even odd

States with the same n+m and the same parity of m have identical 
displacement fields. At the QCM level they collapse into a single 
mode with energy
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1.  Our Quantum Continuum Mechanics is a direct extension of 
the collective approximation (“Bijl-Feynman”) for the 
homogeneous electron gas to inhomogeneous quantum 
systems. We expect it to be useful for

- Possible nonlocal refinement of the plasmon pole 
approximation in GW calculations

- The theory of dispersive Van derWaals forces, especially 
in complex geometries 

-  Studying dynamics in the strongly correlated regime, which  
is dominated by a collective response (e.g., collective modes 
in the quantum Hall regime) 



- This kernel should help us to study an importance of the 
space and time nonlocalities in the KS formulation of time-
dependent CDFT.

2.  As a byproduct we got an explicit analytic representation of 
the exact xc kernel in the high-frequency (anti-adiabatic) 
limit 

- It is interesting to try to interpolate between the adiabatic and 
anti-adiabatic extremes to construct a reasonable frequency-
dependent functional



The ultimate challenge:  Including retardation

Exact excitation 
energies

Elastic QCM

In the elastic theory, a group of levels may collapse 
into one.  How can we recover the correct splitting 
of energy levels?

Answer:  by making the force functional F[u] 
frequency-dependent:  F[u,ω] – i.e., by including 
retardation.


