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One-body reduced density matrix (1-RDM)

• for integer particle number N:

• for fractional particle number  M = No+ω ( 0≤ ω ≤ 1)
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Diagonalization yields the natural orbitals and 
their occupation numbers nj:
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Basics of Reduced Density Matrix Functional Theory



• Total energy is a unique functional          of the 1-RDM[ ]γE

Note:  For given the follow from( )r,r ′γ rr ( ){ } jj n,r    
rϕ

diagonalization, i.e. [ ] [ ]γϕ=ϕγ= jjjj     , nn

Consequence: Any explicit functional
is an implicit functional of γ
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r

Central Theorem by Gilbert (1975):  There is a rigorous 1-1 
correspondence   Ψgs (r1,r2…,rN) γ(r,r’)

• Ground-state energy can be calculated by minimizing [ ]γE
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Functional Minimization
Constraints

ii  
n N=∑
( ) ( )* 3

 i j d r ,

,

ijφ φ = δ∫ r r

,1n0 i ≤≤ N-representability constraint, guarantees that γ comes 
from a many-body wavefunction.

where N is the number of electrons.

orthonormality constraint.
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• The first two are enforced through Lagrange multipliers. The quantity to 
minimize becomes:

μ: chemical potential.
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N-representability condition  0 ≤ nj ≤ 1 generally leads to border 
minimum. 
i.e. one can still minimize but at minimum0

n
F

j

≠
∂
∂

n2

n1

F(n1,n2)

1

1



Total-energy functional:
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Three major differences to DFT

• Kinetic-energy functional is known exactly
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Hence             does not contain any kinetic contributions,
and therefore there is no adiabatic connection and no
coupling-constant-integration formula for Exc.
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• There exists no variational equation [ ]
( ) 0
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• There exists no Kohn-Sham system reproducing the 
interacting             ,  because the non-interacting (KS)  
1-RDM is idempotent while the interacting one is not.
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FUNCTIONALS
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A.M.K. Müller, Phys. Lett. 105A, 446 (1984)

Hartree term

Approximation for the xc energy functional
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Self-interaction correction by 
S. Goedecker, C.J. Umrigar, Phys. Rev. Lett. 81, 866 (1998)
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All presently known approximations have the form
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f(nj,nk)

“power functional” f(nj,nk) = (njnk)α

α = 1   leads to Hartree-Fock
α = ½ Müller functional

S. Sharma, J.K. Dewhurst, N.N. Lathiotakis and E.K.U.G., 
Phys. Rev. B 78 (Rapid Comm.), 201103 (2008) 



The BBC functionals

O. Gritsenko, K. Pernal, E.J. Baerends, JCP 122, 204102 (2005). 

Hierarchy of corrections to the Müller functional
key idea: Distinction between strongly and weakly occupied orbitals



The BBC functionals

O. Gritsenko, K. Pernal, E.J. Baerends, JCP 122, 204102 (2005). 
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• BBC2:  Additionally, omission the square root if both orbitals are
strongly occupied:

• BBC3:   Inclusion of anti-bonding in the list of strongly occupied
orbitals, unless it interacts with bonding. 
Removal of SI terms. 

Hierarchy of corrections to the Müller functional
key idea: Distinction between strongly and weakly occupied orbitals

f• BBC1:  Sign change of   , if  both orbitals are weakly occupied:
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G2/97 test set of molecules [1]:
148 neutral molecules including 29 radicals, 35 
non-hydrogen systems, 22 hydrocarbons, 47 
substituted hydrocarbons and 15 inorganic
hydrides.

Cartesian 6-31G* Gaussian basis-set

L.A. Curtiss et al., JCP 106, 1063 (1997); ibid. 109, 42 (1998).











Application to stretched H2
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Results for 
the uniform electron gas



Numerical results for the Müller functional

Correlation energy of the homogeneous electron gas.
Exact: Ceperley-Alder, PRL 45, 566 (1980), Perdew-Wang, PRB 45, 13244 (1992).

Csànyi-Arias (PRB 61, 7348 (2000)):



Numerical results for BBC1 and BBC2  (∈c = Fermi energy)

Exact: Ceperley-Alder, PRL 45, 566 (1980), Perdew-Wang, PRB 45, 13244 (1992).



The momentum distribution



The Fundamental Gap

E(M) ≡ ground-state energy of M-electron system

For fractional particle number M,  N0 < M < N0 + 1  (with 
N0 integer), the correct definition of E(M) follows from the 
low-temperature limit of a grand-canonical ensemble
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For Coulomb systems E(N) is upward convex (Lieb’s conjecture).
This implies
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Ionization potential:
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Electron affinity:
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Fundamental gap:

( ) ( )NANI −≡Δ (for charge-neutral N-electron system)

for periodic solids:    Δ = quasiparticle gap

for finite systems:       chemical hardness=Δ
2
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In DFT:

( ) ( ) ( ) ( )[ ]η−−η++∈−=∈Δ NvNvN N xcxc
KS
HOMO
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LUMO

KSΔ xcΔ

In LDA/GGA:

KSxc ,0 Δ=Δ=Δ ≈ 50% too small for solids



Discontinuity of μ(M) for the LiH molecule

The discontinuity of μ(M) at N=4 electrons for LiH
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Fundamental gap of finite systems (in a.u.)

System RDMFT CI Experiment

0.175
0.169

0.271

0.1751

0.1691

0.2861

0.177
0.175

0.296

Li atom
Na atom

LiH molecule



The real challenge of Condensed-Matter theory: 
Ab-initio description of strongly correlated solids



Towards strongly correlated systems

Mott insulators in paramagnetic insulating phase
above Néel temperature: <m(r)> = 0

prototype:  1D chain of hydrogen atoms



Towards strongly correlated systems

Mott insulators in paramagnetic insulating phase
above Néel temperature: <m(r)> = 0

prototype:  1D chain of hydrogen atoms

KS system is metallic (independent of xc functional)

Totally unnatural 
description

formally no problem: 
{

KS
gap gap xc

0

E E= + Δ

finite-temperature KS:  half-filled band 



Fundamental gap of semiconductors and insulators
S. Sharma, J.K. Dewhurst, N.N. Lathiotakis and E.K.U.G., Phys. Rev. B 78 (Rapid Comm.), 201103 (2008) 



Difference between LDA charge density and charge density calculated using 
RDMFT, LSDA+U and Hartree-Fock (ρRDMFT(r) − ρLDA(r)). Positive values 
indicate stronger localization of charge as compared to LDA



How to calculate the quasi-particle spectrum in RDMFT?

Mimic (direct and inverse) photo-emission experiment,
i.e. remove or add an electron with well-defined momentum k
(k not necessarily in 1st BZ):

electron addition:    εk = Egs(N) – Egs(N+1k)  =  E(nk=0) – E(nk=1)

electron removal:    εk = Egs(N-1k) – Egs(N)  =   E(nk=0) – E(nk=1)

With E(nk) := Etot[n1 n2 n3 … φ1 φ2 φ3 …] 
with all φi and all ni ≠nk set to 
the values corresponding to the N-electron
ground state
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Stupid

How to best calculate the difference  E(n=1) – E(n=0)?

: Taylor expansion around n=0:

E(1) = E(0) + E′(0) δn + (½) E″(0) δn2 + … (δn=1)

=>    E(1) – E(0)  =  E′(0) + O(δn2)

Clever: Taylor expansion around n=½:

E(1) = E(½) + E′(½) δn + (½) E´´(0) δn2 + … (δn=½)
E(0) = E(½) + E′(½) δn + (½) E´´(0) δn2 + … (δn=-½)

=>    E(1) – E(0)  =  E′(½) + O(δn3)

=>





S. Sharma, S. Shallcross, J.K. Dewhurst, EKUG, arXiv:0912.1118
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