

<u>Superconductivity in Iron Pnictides:</u> <u>From DFT to a functional RG Study</u>

Werner Hanke, C. Platt, C. Honerkamp (Würzburg)
R. Thomale, B. A. Bernevig (Princeton)
S. C. Zhang (Stanford)

The Impact of Iron-based Superconductors:

- Discovery of superconductivity in doped LaOFeAs by Kamihara et al. (Feb. 2008)
- Other iron-based SC followed shortly
- Possibility of higher- T_c in new iron-based compounds

Are iron pnictides new cuprates?

Overview

Introduction

Band structure and Tight-binding approximations
Competing Orders at low Temperatures
Functional Renormalization Group (fRG)
Superconductivity in Pnictides (and Cuprates)
Conclusions

Central Question:

What is universal and what ist material-dependend?

New J. Phys. 11, 055058 (2009)

Introduction

Motivation

- Multiple disconnected Fermi surface sheets allow interesting superconducting states
- s-wave and d-wave are no longer synonyms for nodeless and nodal gaps
- New class of materials with similar electronic properties, but also remarkable differences

DFT bands

- DFT results for LaOFeP and LaOFeAs very similar
- Hole pocket around Γ and electron pocket around M

DFT of LaOFeP, Lebègue (2007)

LaOFeAs, Singh and Du (2008)

Fermi surface and DOS

- Fermi surface shows strongly 2D behavior
- DOS at the Fermi level: Fe 3d (and As 4p) orbitals

LDA FS, LaOFeAs, Singh and Du

LDA DOS of LaOFeAs, Singh and Du

Electron-phonon coupling

• Only modest phonon densities in LaOFeAs, not sufficient for high T_c (λ =0.21)

Phonon dispersion and DOS, Singh and Du

Electron-phonon properties, Boeri *et al.*

Parent compound is antiferromagnetic

For the parent compound: AF order is 40 meV lower in energy than pm state
 Linear SDW state is 100 meV lower

Possible explanation for small Fe moment

- La³⁺, O²⁻, As³⁻ → Fe²⁺ configuration
- octahedral environment of Fe: splitting of t_{2g} and e_g orbitals

Possible explanation for small Fe moment

Cvetkovic and Tesanovic

Yildirim

- La³⁺, O²⁻, As³⁻ → Fe²⁺ configuration
- tetrahedral environment of Fe: splitting of t_{2g} and e_g inverted and reduced
- Band effects lead to further splitting of orbital states

Large spin state: S=2

- Frustrated magnetism due to competing nn and nnn superexchange
 - → small effective Fe moment

Basic considerations for simplification

- Only the Fe (and As) bands are close to the Fermi level (16 important orbitals)
- LnO layers act as spacing layers, provide carriers by out-of-plane doping
- Description in an effective Fe-Fe model possible
- As p orbitals mediate hopping between Fe d orbitals and hybridize the Fe bands

Basic considerations for simplification

- FeAs plane similar to CuO plane in cuprates, but As is out of plane
- 8 atoms per unit cell, although high degeneracy of As/La positions makes it convenient to work with reduced unit cell

Basic considerations for simplification

 Effective Brillouin zone has to be "backfolded" to give the real Brillouin zone

Two-orbital model

- Multiple bands crossing the Fermi level cannot be explained in an effective one band model, unlike the cuprates
- Simplest model: 2 band model
- Direction of the Fe d_{xz} and d_{yz} orbitals maximize overlap with As p orbitals

Two-orbital model

- Problem: Relative value of Fermi velocities by factor of 5 incorrect
- Problem: In the extended "effective" BZ both hole pockets should be around (0,0) instead of the one around $(\pi,\pi) \rightarrow$ incorrect band character

Five-orbital model

- Fourth orbital necessary to remove spurious FS around (π,π)
- Fifth band can improve approximation further, to allow the study of electron or hole doped compounds

DFT bandstructure by Cao et al.

Five-orbital model

Numerical re-fitting of the band structure keeps correct orbital weights and leads to very accurate results

DFT bandstructure by Cao et al.

Superconducting ground state

The 5-orbital tight-binding Hamiltonian

$$H_0 = \sum_{k\sigma} \sum_{mn} (\xi_{mn}(k) + \epsilon_m \delta_{mn}) d_{m\sigma}^{\dagger}(k) d_{n\sigma}(k)$$

- fitted to approximate band structure by Cao et al.
- here $d_{m\sigma}^{\dagger}(k)$ creates particle with momentum k, spin σ in orbital m,
- ξ is kinetic energy, ε is onsite energy

Superconducting ground state

General form of the interaction Hamiltonian (only intrasite)

$$H_{int} = U \sum_{is} n_{i,s\uparrow} n_{is\downarrow} + \frac{V}{2} \sum_{i,s,t\neq s} n_{is} n_{it} - \frac{J}{2} \sum_{i,s,t\neq s} \vec{S}_{is} \cdot \vec{S}_{it} + \frac{J'}{2} \sum_{i,s,t\neq s} \sum_{\sigma} c_{is\sigma}^{\dagger} c_{it\bar{\sigma}} c_{it\bar{\sigma}}$$

- here *U* is the *intra*orbital interaction, *V* is the *inter*orbital interaction,
 J is the energy associated with the Hund's rule coupling,
 and *J* is the pair hopping energy
- Derived from a single two-body term: J'=J/2, V=U-3/4J-J'

Why functional RG?

Theoretical Physics I

<u>Iron-Pnictides:</u> <u>a weakly correlated multi-band system</u>

Local repulsion U in pnictides smaller than in cuprates:

- Underdoped state is itinerant antiferromagnet
- Constrained DFT gives smaller values for U < bandwidth (W)
 (Anisimov et al., Z. X. Shen et al.: U ≈ 2eV, W≈ 5eV PRB 2008)
- Band structure matters (nesting!)

Pairing is most likely due to electron-electron interactions:

Electron-phonon coupling strength too weak
 (coupling λ ≈ 0.2, Boeri et al. PRL 2008, Mazin et al. PRL 2008)

All 5 iron orbitals contribute to electronic structure near FS

Kamihara et al. (JACS 2008)

functional RG should be ideal method!!

Facts and Open Issues

Theoretical Physics I

<u>Important question: gap symmetry ?</u>

- ARPES and Andreev-reflection suggest:
 nodeless sc-gap (Wray et al. PRB 08, Chen et al. Nature 09)
- penetration-depth results and NMR imply:
 sc-gap with nodes (Fletcher et al. PRL 09; Grafe et al. PRL 08)

Answer from theory?

Not so easy: various possibilities ...

Nodes or full gap depending on details?

(F. Wang, D. H. Lee et al. PRL 2009; Maier, Scalapino et al. PRB 2009)

Ding et al. (EPL 2008)

Pairing symmetry and mechanism not yet clear!

The functional RG method

Theoretical Physics I

Exploring the World of Interacting Fermions with the functional Renormalization group

Correlated electrons

Theoretical Physics I

<u>Layered copper-oxides:</u>

(?) stripe order

Layered iron-arsenides:

Correlated electrons exhibit large variety of many-body ground states

→ Challenge for theory

Hubbard model

Theoretical Physics I

Standard model for strongly correlated fermions: Hubbard model

$$H = -t \sum_{\text{nn,s}} c_{i,s}^{\dagger} c_{j,s} - t' \sum_{\text{nnn,s}} c_{i,s}^{\dagger} c_{j,s} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

& variants: multi-orbital, lattice, ...

Diversity

Theoretical Physics I

Complexity from simplicity

$$H = -t \sum_{\text{nn,s}} c_{i,s}^{\dagger} c_{j,s} - t' \sum_{\text{nnn,s}} c_{i,s}^{\dagger} c_{j,s} + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

How can structure-less onsite/short-range interaction lead to diversity?

$$V_{\text{eff}} = V_U + V_U + ...$$

→ More is different! It's a many-body problem!

Dynamics of other particles (affected by band structure & tuning parameters) change effective interactions!

Renormalization group

Theoretical Physics I

<u>Vary/decrease energy scale Λ:</u>

- →Take into account ("integrate out") degrees of freedom step by step
 - → Approach low energy scales in controlled way
 - \rightarrow RG differential equation d/d Λ V_{eff} = ...

Infinite hierarchy of RG equations...but unbiased

Theoretical Physics I

- Needs truncation, 6pt
 vertex set to 0 →
 perturbative treatment

Wetterich 1993 Salmhofer 1998 (truncated after γ_4) Peierls Cooper (a)

Vertex-

Corrections

Includes all important fluctuations on equal footing!

Diversity enters here!

Implementation for two-dimensional systems

Theoretical Physics I

- Coupling function $V_{\Lambda}(k_1, k_2, k_3)$ with two incoming wavevectors k_1, k_2 and outcoming k_3 ($k_4 = k_1 + k_2 - k_3$)
- Discretize: approximate V₁(k₁, k₂, k₃) as constant for k₁, k₂ and k₃ in same patch

Zanchi and Schulz PRB 2000

 Frequency dependence can be taken into account

> Functional RG: flow of coupling function derived from RG eqn of generating functional

Flow to strong coupling

Theoretical Physics I

Flow without self-energy feedback: Analysis of flow to strong coupling

Leading low-energy correlations?

Energy scales?

Theoretical Physics I

Spin-density wave:

1st outgoing k₃ fixed at point 1

- Fully nestedFermi surface
- U = 2t, t' = 0.0,T = 0.001t

Theoretical Physics I

Spin-density wave:

- Fully nestedFermi surface
- -U = 2t, t' = 0.0,T = 0.001t

Theoretical Physics I

Spin-density wave:

- Fully nestedFermi surface
- U = 2t, t' = 0.0,T = 0.001t

Theoretical Physics I

Spin-density wave:

- Fully nestedFermi surface
- U = 2t, t' = 0.0,T = 0.001t

Theoretical Physics I

Spin-density wave:

- Fully nested Fermi surface
- -U = 2t, t' = 0.0,T = 0.001t

Interpretation: antiferromagnetic spin-density wave

Theoretical Physics I

<u>d-wave pairing</u> <u>on square lattice:</u>

imperfectly
 nested "high-T_c"
 Fermi surface

$$-U = 3t, t' = -0.3,$$

 $T = 0.001t$

Theoretical Physics I

incoming

1st

imperfectly nested "high-T_c"
 Fermi surface

$$-U = 3t, t' = -0.3,$$

 $T = 0.001t$

Emergent collective behavior in cuprates

Theoretical Physics I

<u>d-wave pairing</u> <u>on square lattice:</u>

imperfectly
 nested "high-T_c"
 Fermi surface

$$- U = 3t, t' = -0.3,$$

 $T = 0.001t$

Emergent collective behavior in cuprates

Theoretical Physics I

imperfectly
 nested "high-T_c"
 Fermi surface

$$-U = 3t, t' = -0.3,$$

 $T = 0.001t$

Emergent collective behavior in cuprates

Theoretical Physics I

functional RG for the iron-pnictides

Theoretical Physics I

<u>Iron-Pnictides:</u> <u>a weakly correlated multi-band system</u>

Local repulsion U in pnictides smaller than in cuprates:

- Underdoped state is itinerant antiferromagnet
- Constrained DFT gives smaller values for U < bandwidth
- Band structure matters (nesting!)

All 5 iron orbitals contribute to electronic structure near FS

functional RG should be ideal method!!

Kamihara et al. (JACS 2008)

Luetkens et al. Nature 2008

Theoretical Physics I

D.-H. Lee's group (PRL 2009)

full five-orbital band structure, find extended s-pairing

A. Chubukov's group (PRB 2008)

• simplified, "two-circle model", find extended s-pairing

Great! But is everything understood? ...not quite ...

Our group:

- Interpolate between two treatments
- Use different band structures

Questions to be studied:

- Universal behavior? What is material- or model-specific?
- Parallels between cuprates and pnictide superconductivity?

Iron pnictides and cuprates

Theoretical Physics I

Chubukov et al. (PRB 2008):

"g-ology" for pnictides couplings depend only on pocket

Furukawa, Salmhofer, Rice (PRL 1998):

Two-patch model for cuprates

94

91

For perfect nesting, one-loop equations are the same:

For perfect
$$\dot{g}_1 = 2d_1g_1(g_2 - g_1)$$
,

$$\dot{g}_2 = \dot{d}_1 \left(g_2^2 + g_3^2 \right),$$

$$\dot{g}_3 = -2d_0 g_3 g_4 + 2d_1 g_3 (2g_2 - g_1)$$

$$\dot{g}_4 = -\dot{d}_0 \left(g_3^2 + g_4^2 \right).$$

Flow to strong coupling: g_2 , $g_3 \rightarrow \infty$, $g_4 \rightarrow -\infty$, g_1 diverges more weakly

SDW: $g_2 + g_3$ pairing: $g_3 - g_4$ uCDW: $g_2 + g_3 - 2g_1$ dPomeranchuk: $2g_2 + g_1 - g_4$

Several channels diverge (SO(6)), driven by same ("umklapp") processes

Cannot have one winning channel alone!?

fRG for pnictides with g-ology inital cond's

Theoretical Physics I

- 4-band dispersion (Korshunov & Eremin, EPL 08), bare couplings à la (Chubukov, Efremov, Eremin)
- Allow for *k*-dependence of effective interactions around Fermi surfaces
- All one-loop diagrams
- Study doping dependence

Undoped system: single-channel SDW instability

Theoretical Physics I

Final (effective) interactions near instability:

Doped case: single-channel pairing instability

Theoretical Physics I

Final (effective) interactions near instability:

fRG with "g-ology initial conditions"

Theoretical Physics I

fRG confirms basic picture:

- AF-SDW for undoped case
- Extended s-wave pairing for both e- and h-doping

Model dependence 1:

Multichannel instability removed when k-space diversification of couplings is allowed

Model dependence 2:

Very isotropic extended s-wave gap

How good are these approximations?

→ Use more realistic band structure + interactions defined in orbital picture!

more realistic model for the iron-pnictides

Theoretical Physics I

Free Hamiltonian for 5-Fe orbitals:

$$H_0 = \sum_{s=\uparrow,\downarrow} \sum_{\vec{k}} \sum_{a=1}^{3} \sum_{b=1}^{3} c^{\dagger}_{a\vec{k}s} K_{ab}(\vec{k}) c_{b\vec{k}s}$$

$$a, b \in \{d_{xz}, d_{yz}, d_{xy}, d_{x^2-y^2}, d_{3z^2-r^2}\}$$

tight binding fit to LDA results

main orbital weights at FS

Onsite interaction ($U_1 = 4eV$, $U_2 = 2eV$, $J_H = J_{pair} = 0.7eV$): $H_{tot} = \sum_{i=1}^{n} \int_{\mathbb{R}^n} U_i \sum_{i=1}^{n} n_{i+1} + U_2 \sum_{i=1}^{n$

$$H_{\text{int}} = \sum_{i} \left\{ U_{1} \sum_{a} n_{i,a,\uparrow} n_{i,a,\downarrow} + U_{2} \sum_{a < b} n_{i,a} n_{i,b} + J_{H} \left[\sum_{a < b,s,s'} c_{ias}^{\dagger} c_{ibs'}^{\dagger} c_{ias'} c_{ibs} + (c_{ias}^{\dagger} c_{ias'}^{\dagger} c_{ias'} c_{ibs'} c_{ibs} + \text{h.c.}) \right] \right\}$$

Starting the flow (5 orbital model)

Theoretical Physics I

SDW- and SCordering tendencies emerge at low energy scales!

 k_i - positions at FS (1 – 64) pts

Comparing different models for the iron pnictides....

How robust are these findings from fRG?

Band structure 1:

Graser, Maier, Hirschfeld, Scalapino NJP 2009: 5-orbital tightbinding fit to DFT by Cao, Hirschfeld, et al. (PRB 2008)

Band structure 2:

Kuroki et al. PRL 2009: Minimal model with 5 maximally localized Wannier *d*-orbitals

Model dependence I

Theoretical Physics I

10 % electron doping : (same bare interaction in both models)

5-orbital model:

Graser, Maier, Hirschfeld, Scalapino NJP (2009)

5-orbital model:

Kuroki et al. PRL (2008)

Both models show similar results at electron doping!

flow of various channels:

s± -formfactor:

flow of various channels:

s± -formfactor:

Model dependence II

Theoretical Physics I

10 % hole doping:

5-orbital model:

Graser, Maier, Hirschfeld, Scalapino NJP (2009)

5-orbital model:

Kuroki et al. PRL (2008)

Undoped case:

model à la Kuroki :

- sdw wins
- critical scale is higher despite same (bare) interaction

model à la Graser :

 no leading sdwinstability

Model dependence III

Theoretical Physics I

Both 5-orbital models (á la Kuroki & Graser) show:

- nodeless s± and nearby d-wave pairing in electron doped regime
- s± pairing with nodes in hole doped case

whereas:

- Kuroki's model shows a more pronounced propensity to sdw-order (due to better nested FS in undoped and hole doped regime)
- no leading sdw-order in the undoped Graser model (for one special set of interaction pars.)

FS for Kuroki model (x=0.1 , x=-0.1)

different doping evolutions of FS x=0.1

Theoretical Physics I

What is universal?

fRG suggests that in both cuprates and pnictide SC is driven by SDW-scattering

sc-gap anisotropy and existence of nodes depends on details (system parameters, doping,..)

Importance of orbital weights

Theoretical Physics I

Without / with orbital structure in the initial interaction:

only 4 relevant scatterings:

sc - formfactor at n = 6.10:

full orbital (initial) interaction:

sc - formfactor at n = 6.10:

gap anisotropy is due to orbital – weights !!

Origin of nodes in sc-order parameter

k=1, k=2,

k=3, k=4

Theoretical Physics I

 $V(-k, k, k - (0,\pi))$

without orbital weights:

Dual SDW & SC scattering

due to orbital weights: the sc-gap not necessarily favors

$$\langle \Delta_k \rangle \langle \Delta_{k+(0,\pi)}^\dagger \rangle < 0$$
 for all k !!

Certain (dual) sdw & sc channels diverge with negative sign

all (dual) sdw & sc channels remain repulsive

 Λ [eV]

Conclusion

Theoretical Physics I

- Most dominant pairing instability at weak coupling is
 extended s-wave (nodes/nodeless at electron/hole doping)
- Orbital weights are essential for gap anisotropy and nodes
- Nearby (subleading) d-wave symmetry might cause(s+id)-pairing

Challenges for RG- (and other) theories:

- Analyze renormalization effects in band structure(orbital weights in bands may change !)
- Include As-p orbitals (p-d interaction)
- Study unconventional electron (magnon) phonon coupling large Fe-isotope effect (Liu et al. Nature 2009) anomalous phonon dispersion in CaFe₂As₂ (Jülich, Karlsruhe 2009)

Platt, Honerkamp, Hanke, NJP 2009 Thomale, Platt, Hu, Honerkamp, Bernevig, arXiv: 0906 Thomale et al. to be published Platt et al. to be published

Thank you for listening

Possibility of a time-reversal symmetry breaking (s+id) pairing:

Striking a compromise between different order parameters

In collaboration with S.C. Zhang (Stanford)

Possibility of (s+id) - pairing

Theoretical Physics I

- Different nestings cause frustration of the pairing order-parameter: (in a spin-fluctuation based pairing)
- Competition of these two pairings can lead to a mixed (s+id) state after s-pairing occured
- B1g Raman mode can reveal if this mixed - state is favored or not
- Our fRG results show a closecompetition betweens- and d-wave pairing

W. C. Lee, S. C. Zhang, C. Wu, PRL (2009)

Possibility of (s+id) - pairing

-100 - sdv

-200

-250 -

d-wave sc

s, wave sc

Theoretical Physics I

Solve gap equation after decoupling in the pairing channel at a scale $\Lambda = 0.01$ eV:

$$\Delta_k = -\sum_{k'} V_{\Lambda}(k, -k, k', -k') \frac{\Delta_{k'}}{2E_{k'}} \tanh\left(\frac{E_{k'}}{2T}\right)$$

(s+id)-pairing as selfconsistent solution:

(s+id)-pairing is contained in the fRG result check free energy dependence

Introduction

Experimental facts

- Experiments not conclusive about the symmetry of the ground state
- Possibility: Different ground states in different materials?

L. Malone *et al.*:, Penetration depth shows exponential behaviour

H.-J. Grafe *et al.*: NMR relaxation rate shows powerlaw behaviour