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Goals: Real-time response of complex and   
non-equlibrium systems

Beyond linear response and 
harmonic approximations

Talk: 
I. Non-linear Optical Response – RT-TDDFT

Codes: RT-SIESTA 

II. Real time XAS of non-equlibrium system
Finite Temperature DFT/MD +  RSGF   XAS

Codes:  VASP + FEFF8 4



I. Non-linear Optical Response
Goal: non-linear optical response of
organic-photonic
systems

Difficulty: frequency-space is computationally
demanding - too-many excited states

Strategy: extend linear RT-TDDFT/ SIESTA approach 
Sanchez-Portal, Tsolakidis, and Martin, Phys. Rev. B66, 235416 (2002) 5



Motivation: Polymeric Electro-optic 
devices for integrated photonics
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The electro-optic coefficient r33 ~ βzzz
change of the refractive index induced by an applied voltage

NOTE: The best EO coefficient of  organic polymer is ~ 450 pm/V, 
more than 15x higher than the best inorganic materials!



Approach: Real space, real time  linear
and non-linear optical response*
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J. Chem. Phys. 127, 154114 (2007)



Nonlinear Polarizabilities

Second order nonlinearities

Second Harmonic Generation (SHG)

Optical Rectification (OR)

Electro-Optic effect (Pockel’s effect) 7



Real time TDDFT
Yabana and Bertsch Phys. Rev. B54, 4484 (1996)

Direct numerical integration of  TD Kohn-Sham equations

The response to external field is determined by applying a
time-dependent electric field ΔH(t) = −E(t)·x.

Optical properties determined from total dipole moment:

8MORE EFFICIENT THAN FREQUENCY –SPACE METHODS !



Calculation of Ψ(t) at each time step
using SIESTA*

Self-consistent DFT (Ground State) Code with 
LDA or GGA exchange/correlation

Ab-initio
LCAO and confined basis functions using 
pseudo potential

Scalable
Projects the electron wavefunctions and 
density onto a real-space grid

Flexible
Multiple zeta basis definition

Accurate for excited states
9*Spanish Initiative for Electronic Simulations with Thousands of Atoms



Numerical Real time Evolution

Ground state density ρ0, overlap matrix S, and H(t) at 
each time-step evaluated with SIESTA

Crank-Nicholson time-evolution: unitary, time-reversible
stable for long time-steps 

Adiabatic GGA exchange-correlation (PBE) functional

Coefficients of Orbitals

10

_

_

,  t  = t + ∆ t/2  
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Review: Real time Linear Response

Standard relations…
Induced Dipole Moment

Linear Response Function

Optical Absorption

Linear Dielectric Function
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Example: Linear Response
Carbon Monoxide (CO), pz(t) response due to applied Ez(t)
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Example:Small molecules
p-Nitroaniline (pNA)

Linear absorption

Sum rule
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(in chloroform)

Total 52 valence electrons
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Linear response, yields linear absorption spectra σ(ω) or the polarizability
α(ω), which is related to the refractive index though the Lorentz-Lorentz
relation

The figure below is the calculation of refractive index n(ω) from the from the
linear polarizability calculation of RT-TDDFT for the YLD156 chromophore
developed by the Dalton group (UW).

Linear response of Large 
Photonic molecules  “YLD156”
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Real time Nonlinear Response

The nonlinear expansion in field strength

Accounting for time lag in system response

How can we invert the equation to get nonlinear response function?
15

?



Extraction of Static Nonlinear 
Polarizabilities

Standard technique: fit to static expansion

Either finite-difference or polynomial fitting pi(E) e.g.,  
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Extraction of Dynamic Nonlinear 
Polarizabilities  

Set Ej(t) = F(t)Ej and define expansion pi(E) 

where p(1) yields linear response, p(2) first non-linear 
quadratic response, ….

The quadratic response χ(2) is then given by
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Linear and
Nonlinear
response
of CO
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Real time vs Frequency space
Nonlinear Response

Operation cost
Sternheimer equation (frequency space)

Real time

Memory cost
Sternheimer equation (frequency space)

Real time
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Example: CO: Nonlinear
Second Harmonic Generation (SHG)

Comparison with other methods
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“Vector” average, 
related to EFISH 
experiment

atomic units
PBE

*X. Andrade, S. Botti, M. A. L. Marques and A. Rubio J. Chem. Phys. 126, 184106 (2007)

*



Example: H2O: Nonlinear
Second Harmonic Generation (SHG)

Comparison with other methods
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DALTON code

PBE



Chloroform CHCl3 

Preprint    Submitted to   J. Chem Phys      (October 2009)

Hyperpolarizability

All 3 methods 
with

large basis sets
are 
consistent



Local Response Densities
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Contributions from Cl and HC are opposite in sign



CHCl3: Effect of basis

Nonlinear calculation require large basis  
especially for small molecules

DZP 5Z4P 5Z4P 5Z4P 5Z4P

r_s(C) 4.09 6.91 8.03 10.57 11.11
r_s(H) 4.71 8.80 10.48 13.80 14.88
r_s(Cl) 3.83 6.15 7.15 8.95 9.41

μ z 0.26 0.41 0.40 0.40 0.40
α 44.39 60.18 60.39 60.15 60.09
β xxy -7.62 -9.44 -11.67 -12.19 -12.18
β xxz -2.83 -4.97 -6.23 -6.40 -6.40
β zzz -16.40 3.98 9.39 11.35 11.28
β k -13.28 -3.59 -1.86 -0.88 -0.90
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(default)

Linear
------------
Nonlinear

“radius”



Chloroform (CHCl3 )
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Static calculation comparison

GTO
Num
RS

Preprint    Submitted to   J. Chem Phys      (October 2009)



pNA: Nonlinear (SHG)

Comparison with other methods
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NLO Molecule

YLD156 chromophore
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Experimental Absorption
peak of YLD_156 in 
Chloroform solution

Real-time Absorption
peak of YLD_156 (GAS)
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YLD156
Nonlinear results
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T. Kodaira and et al., J. Chem. Soc., Faraday Trans., 1997, Vol. 93

solvent
βsolute

/10-30 esu
λmax
/nm

chloroform 16.80 ±0.50 347

p-dioxane * 16.90 ±0.40 352

tetrahydrofuran (THF) 19.90 ±1.00 363

ethyl acetate (EtAc) 20.50 ±0.70 356

acetonitrile (MeCN) 23.30 ±1.00 364

methanol (MeOH) 22.40 ±0.90 356

dimethyl sulfoxide (DMSO) 24.70 ±1.00 388

N,N-dimethylformamide (DMF) 26.60 ±0.80 381

Solvent Effects –
HRS Experiment

* Reference value for HRS, measured by EFISH
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“Local” Solvent Effects

Large local contact effects with 
methanol (polar) or chloroform (non-polar)
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Conclusions I

Efficient RT-TDDFT approach for frequency 
dependent nonlinear optical response –
extension of  RT-SIESTA

Accuracy comparable to frequency-domain 
methods for small systems

Efficient on large systems (HPC ready)

Can treat solvent effects etc.  
35



Pt10 Cluster on [110] γ-Al2O3

*F. Vila, J. Rehr, A. Frenkel, R. Nuzzo, J. Kas, Phys Rev. B 78, 121404(R), (2008).

MYSTERY: Unusual thermal

properties of  Pt10 /γ-Al2O3

NTE, disorder, redshift in XAS

Approach: Real-time

Finite temp DFT/MD

Part II: X-ray Spectra – DFT/MD - Dynamic 
Structure in Supported Pt nanoclusters*

metallic Pt oxidized Pt
Al O

36
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*Kang, Menard, Frenkel, Nuzzo., 
JACS Commun. 128, 12068 (2006)

Experimental XAS Observations*



Pt-Pt bond expansion
going from He to H2
atmosphere

Pt-Pt bond negative 
thermal expansion NTE

High Pt-Pt disorder

Increased whiteline
and redshift of XANES 
with increasing T

ExperimentFeatures to explain
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2500  3 fs steps
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time-elapsed rendering
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Computational Details

DFT/MD
VASP
PBE Functional
396 eV Cutoff
3 fs time step
3 ps Equilibration
5 ps Runs (3)
165 K & 573 K

XANES
FEFF8
Full Multiple Scattering
32 Configurations from MD
7 Å Clusters (~150 atoms)

Study prototypical 
Pt10 cluster

on [110] surface 
of γ-Al2O3



Bond expansion in H2
atmosphere

2.534

2.563

2.658

2.529

2.589

2.559

Adding H increases bond length
Bond expansion in H2
atmosphere

Adding H increases bond lengths



Negative Thermal Expansion

2.585 Å

2.596 Å
- 0.011 Å

(- 0.027 Å expt)

R
Pt-Pt Pair Distribution Function



High Pt-Pt Disorder

10×10-3 Å² (10×10-3 Å²)

5×10-3 Å² (8×10-3 Å²)

σ



Increased intensity and redshift at high T



Center of Mass Motion
Physical Interpretation

Librational motion
of center of mass

Period      ~ 2 ps
Amplitude ~ 1 Ǻ

Hindered 
Brownian motion



Librational motion: long time-scale fluctuations of the center of mass

Fluxional behavior in tetrahedral 
clusters with carbonyl ligands

Y Roberts, BFG Johnson, RE Benfield,   
Inorg. Chim. Acta 1995

Co4(CO12)

Librational motion

39

http://en.wikipedia.org/wiki/Image:Lunar_libration_with_phase_Oct_2007.gif


Cluster footprint @ 573 K



Configurational avg time-series
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Accounts for dynamic structural fluctuations:

vibrations, charge fluctuations, libration, …



Conclusions  II

Dynamic structure explains all four 
experimental observations:

Structural and spectroscopic

Novel interpretation

Librational & Hindered Brownian motion

Non-equlibrium behavior modeled well by

real-time, finite temp DFT/MD 
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That’s all folks
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