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W Electronic Structure

O DFT considers total energy E as a functional of the density p and

reduces the problem to solving single particle Kohn Sham equations
with energy independent potential

(_V2 +VDFT)Wk = &Y,

L

From here various properties can be deduced with spectacular accuracies

Band structures g, Density p Energy E
Single particle spectra Magnetic Moments Crystal structures
Densities of states Bonding & Covalency Equations of State
Photoemission & Optics Static Respone Functions Phonon and Magnon

Transport & Superconductivity Spectra



B Problemswith Strongly Correlated Systems

Density functional calculations using local density approximation (LDA)
grossly fail for materials with strong correlations:

1 Ground state volume of 0-Pu is 30% too small within LDA.

O Multiplet transitions seen in many lanthanides and actinides cannot be
resolved by DFT-LDA calculation.

O Kondo and mixed valence physics is missing.

O Mott physics, paramagnetic insulating behavior cannot be modeled by
DFT.




® Mott Transition isnot here!

Paramagnetic Mott insulators at high temperatures cannot be
understood based on standard band theory argument.

According to the band theory a material with partially filled band
will remain metallic at all interatomic distances

Lre2Cr ¢ ce2)

ImG ()

Atomic limit is not correctly described.



M Excitationsin Atoms
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¥ Atomic Self-Energies have singularities

Ground state energies for configurations d", d"*1, d1give rise to electron
removal E -E_, and electron addition E -E_, , spectra. Atoms are always insulators!

E-E ,=ea-U/2 E -E

Electron removal

L =e4+U/2

Electron addition

Lower & upper Hubbard bands

=
or two poles in one-electron Green function % 1 .
1/2 1/2
_|_

G(w) = = =
w—s+U/2 w—eq4-U/2 U

Coulomb gap

Self-energy with a pol/e is required.:
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W— Ed

This is missing in DFT effective potential or LDA+U orbital dependent potential



m Mott Insulators as Systems near Atomic Limit

Classical systems: MnO (d°), FeO (d), CoO (d”), NiO (d®).
Neel temperatures 100-500K. Remain insulating both below and above T

LDA/LDA+U, other static mean field theories, cannot access paramagnetic

insulating state. 1

—&y _VLDA

Goal®@) =

Frequency dependence in self-energy is required:
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Sometimes bringing spin dependence helps however!



* Properties of UO, & PuO,

UO, (UOX) or its mixture with PuO, (MOX)

s Both are Mott-Hubbard insulators,
Eg~2 eV.

= UO, is AFM with T =30K, while
PuO, is non-magnetic.




5l Ground states for f-electrons
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m L ocalized electrons: Dynamical Mean Field Approach

Electronic structure is found by solving Dyson equation

[V + Z(0)ly (1, @) = g (@)y (1, @)

where dynamical self-energy for f-electronsis extracted by solving
Anderson impurity model

- V2
X (w)=w-¢, _[Gimp(a))]_l_z <

| 1 - :
Poles of the Green function G(k, @) =
- 5k(w)
describe atomic multiplets, Kondo resonances, Zhang-Rice singlets, etc.

/

0 ®

Better description compared to DFT-LDA is obtained




* Strongly Correlated Materials

Not well described by a “standard model” based on band theories: Fermi
liquid theory, Kohn Sham DFT, GW, where QPs are a reference system.

ImG(k, ®) ImG(k,®)

band like strongly correlated




* Spectral Density Functional as alternative to DFT

Density is not a good variable to describe total energies of strongly
correlated system

A

N(E) |

=E : 7;E

N(E) |

Formulate a functional where electronic spectral function is a variable.
This will predict both energetics and spectra.

A functional where local spectral function N(E) is at the center of
interest is based on Dynamical Mean Field Theory.

Can be entitled as

Spectral Density Functional
(Kotliar, SS, Haule, Udovenko, Parcolett, Marianetti,

Reviews of Modern Physics, 2006)




® Green Function Theory

Effective action formulation (Chitra, Kotliar, PRB 2001) x=(r,7)
S=[ " ([0, = V2 +V () (X) +

[ dxx'y* (" (X )Ve (X=X Yy (Y (x)

 Adding an auxiliary source field to the system J(x, x")
to probe Green function
9J]= S+j dxdx’ J (X, XY (X )" (X)
W[J]=~In| D[y ylexp(-S13])

d Eliminate source in favor of conjugate field using Legendre
transform, obtain Free Energy Baym-Kadanoff Functional

[ [G]=W[J]~Tr[JG]



* Freedom to construct functionals

Choosing various source fields, various functionals can be
obtained:

Example 1. Static local source J(x)=J(r) &7)

SI]=S+| drI(rw(ry’ (r)
probes the density => Density Functional I'y-[p] IS obtained.

Example 2,3,4... Choose appropriate source — obtain
TD-DFT, Spin Polarized DFT, LDA+U, ...

In all cases free energy of the system is accessed in extremum.
(Kotliar, Savrasov, in New Theoretical Approachesto Srongly Correlated Systems, 2001)



W Spectral Density Functional Theory

Spectral Density Functional Theory is obtained using local source
3 (%, X') = J(%,X)6(r,1")

which probes local Green function

G..(r,r'iw)=G(r,r',iw)6(r,r")

¢ L
G, (r,r.z)=G(,r'7)

Total Free Energy Is accessed

For[Giocl
O o
0G

loc



* L ocal Green function Functionals
p(r) — ZG(r,r,ia))ei“)o+ = ZC;DF_I_(II-,r’ia))eia)o+

Family of Functionals

I [G(r,riw)] Coe [ Y G(r,1,im)e™ ]
NG, . (r,r'iw)] i

\ 7 s =G(“‘"o' ® =1 1—‘DFT[IO(r)]

) 4
N\ .
Ikd > o G (r,rio)=G(r,r',im)é(r,r’)




* Kinetic energy & generalization of Kohn-Sham ldea

To obtain kinetic functional:

FSDF[GIOC] = KSDF[G ]+(DSDF[GIOC]

loc

Introduce fictious particles which describe local Green function:

ija)(r)nga)(r )

G(re Q ,r'iw)
“ g(r,r'm) =
%’: @ — Ekja)
G K G Keore Gl = K [9]

7N A& Exactly as in DFT:
V (A zz%(r)%(r')

“““ » QC D S k] a) - Ekj

<G, (r,r)=1> KDFT[p] — KDFT[GKS]




* L ocal Self-Energy of Spectral Density Functional

[ Spectral Density Functional looks similar to DFT

[Tiga] = 22 fuubigo = 2| Ma (171G (1.1 ) dr

NI

[ p(r Voo (r)dr +E,[p]+ @, [Gy,.] —

(lo+u-Ey,)

O Effective mass operator is local by construction and plays
auxiliary role exactly like Kohn-Sham potential in DFT

M (1,1,0) = N (1) + V4, (NI = 1)+ oD,

Ioc(r r C())

d Energy dependent Kohn-Sham (Dyson) equations give
rise to energy-dependent band structure

_VZijw(r) + j My (r, 15, @)y, (r)dr' = E, w,,(r)

a E have physical meaning in contrast to Kohn-Sham spectra.
Kl are designed to reproduce local spectral density



* Local Dynamical Mean Field Approximation

d Exchange-correlation functional @, [G.] is unknown

 Local dynamical mean field approximation for
(Dxc[GIoc]

Sum of diagrams constructed with local Green function G,
and bare Coulomb interaction v

 Remarkably, that sum can be performed by mapping onto
auxiliary guantum impurity model subjected to self-consistency
condition (Georges, Kotliar, 1991)

Sro = [, DU ()G (X W)+ ey (" (X Ve (x= X W w (%)
Go (% X') = G (%, X') + My (%, X')



* Dynamically Screened Interaction

A Interaction functional in Baym-Kadanoff theory (Chitra, Kotliar, 2001)
1 1
o, [G]=E, - ETr INW + ETr[V{:1 —W‘l]W +¥. [GW]
obtained via introducing another source coupled to v (X (X (X)w(X)
Functional T;,[ G,W] is extremized both over G and over W
G =G, -GG

W =v, -V .IIW

 Interaction functional in spectral density functional theory is obtained via
introducing a local source which probes " (X)) (X )w (X)) (x')
In part of the space:

W . (r,r',w)=W(r,r',w)é(r,r")

May be a formal way to define on-site “U”



* Local Interaction & “Kohn-Sham” interaction

(1 Do the same Kohn-Sham trick to find a “non-interacting” functional
(Chitra, Kotliar, 2001) Introduce auxiliary interaction JV(r,r', w)

W(r,r',w)=W(r,r',w)=W_(r,r',o),re Q_,r'e Q
W(r,r',w) #W(r,r',w),W

loc

(r,r'yw)=0,re Q_r'e Q

oC loc

O Interaction Functional in Spectral Density Functional Theory
1 1
(I)SDF [GIOC’W] - EH B ETr InW + E-rr[vc_:1 B W_l]W T \PSDF [G|oc’W]

Functional I';[G, W] is extremized both over G and over W
G =G, -G M9
W=V, -V, PW
Q 7 is an auxiliary susceptibility (similar to mass operator M)
P is manifestly local within Q.



* Extended Dynamical Mean Field Theory

1 Reduction to impurity model (S, Kotliar, 1995, Chitra, Kotliar 2001)

S = [, DU (0G0 X WO+ ey (" (XN (x= X W (0w (X)

leads to definitions of bath Green function and bath interaction
which is input to impurity model

5 (%, X") = Gg (X, X') + M, (X, X)
V(% XT) = Wioe (X, X7) +P(X, X')



B Self-Consistency

Spectral Density Functional Theory within
Local Dynamical Mean Field Approximation

Input M, P
|

v

-1 _ g4 _ -1
G =M-G; c.w | G,.=66. |G

loc?
Wl=P—-v; > W, =86, >

loc

G'=G+M
V=W, +P

loc

A
M P

Gos Yo

v Local Impurity Model
Self-Consistency




B Further Approximations

(J LDA+DMFT method and its static limit: LDA+U

(Anisimov et.al, 1990, Anisimov+ Kotliar team, 1997,

Held+ Nekrasov+ Vollhard, 2001, McMahan+ Held+ Scal ettar, 2001)

Why not think of LDA as most primitive impurity solver?

Divide electrons onto light and heavy. Apply LDA for light electrons.

Use more intelligent solution of impurity problem for heavy electrons.

[ Local GW approximation
(Kotliar+SS, 2001, Zein+ Antropov 2002)
Solves impurity model using GW diagram: M, =-G, W,

d GW+DMFT Method
(Georget+ Aryasetyavan+ Bierman, 2002, Zein+ SS+ Kotliar, 2006
Eliminates problems of input “U” and double counting.




1 LDA+DMFT as natural extension of L DA+U

In LDA+U correction to the potential
AV =37 (W — =)=V, =27

atomic atomic,HF

LDA+U o VDC

IS just the Hartree-Fock value of the exact atomic self energy.

Why don’t use exact atomic self-energy itself instead of its Hartree-Fock value?
This is so called Hubbard | approximation to the electronic self-energy.

LDA+U ::> LDA+ 2atomic,HF ::> LDA+Zatomic(w)

Next step: use self-energy from atom allowing to hybridize with conduction
bath, i.e. finding it from the Anderson impurity problem.

I—D'A""z"atomic(a)) :> LDA+ zinpurity(w)

Impose self-consistency for the bath: full dynamical mean field theory is
recovered.

LDA+Z, iy (@) = LDA+DMFT




il Excitationsin Mott | nsulators

Classical systems: MnO (d°), FeO (d®), CoO (d”), NiO(d®); parent materials
for HTSCs: CaCuO,, La,CuQ, (d°). Neel temperatures 100-500K. Energy
gaps 20,000+ K. Remain insulating both below and above 7,

LDA/LDA+U, other static mean field theories, cannot access paramagnetic
insulating state.

—|mGJsDA(w) <E( /\ /\

— 1M G ga(®)

A

ex

Cannot explain the existence of Zhang-Rice states

0.0 )

! \ / \ 7 \.\
ozr N S A
-7l RN ERX
| ! \ T O \e
Y AR
0.4
| (w2, 12)

(0,0) (7c,) (m,0) (0,0)  (m,0) (0 )

Cannot explain waterfalls, disapperance of spectral weight and so on.

—‘ =

B
s
w

Energy (eV)




M LDA+DMFT for HTSCs: Dispersion of Zhang-Rice singlet

Single-site DMFT Two-site Cluster ED

oo o(:)\:ﬂ)éo

2(k, ) = 2y, (@) + Xy, (@) [ cos(k, ) + cos(k, )]

> SraCu0,Cl
FoLu
014 2 2%~12
0.2
o 0.3
> -0.4 -
@ AN
k= 0.5—% A
06- A@@% >
&
0.7 £

Yin, Gordienko, Wan, SS, PRL 2008



* Waterfallsin HTSCs:

Features of recent ARPES data:

e Doping-independent Fermi
velocities

e Disappearance of spectral
weight at Gamma

e Existence of two energy scales

Main Features

—
=
&,
==
o
e
)
=
|
)
=
=
£
28]

(/2,m/2) (0,0) (m/2,n/2)
Momentum (k,=k,)

FIG. 2. Intensity plot of data shown 1 Fig. 1 as functions of the
binding energy and momentum. The data was symmetrized around
the I' point. Also shown on the plot are the dispersions obtained by
following the peak positions of the MDCs (solid line) and the EDCs
(circles and triangles). The results are compared with the shifted
dispersion from the LDA calculation (dashed line).

Ronning et.al PRB 2005



M Tight-Binding Picture

(f) NB
LHB

i Ak

T
£0°@°

p
© ©

k-dependent hybridization

Assume two-pol e approximation:

Y(w) = W + W,
w—B w-F

One-dlectron Green Function:

w8, -3(@) V() ViK'
G(k,w) = -V 4 (K) w- &, 0
_Vpd (k) 0 w—E&,

V., (k) =Y eV (R) = 2t[sin(k,a) +sin(k,a)]

disappears at I" point
V,(k=0)=0

aux

Spectrum of Excitations from
effective 5x5 Hamiltonian:

& V(K Vig(k) Wi W,
Vi (K) g, 0 0 O
~|V,(k) 0 e, 0 0
Moo o R 0
M0 0 0o P,




* Waterfallsin HTSCs: Oxygen Content in ZR singlet

C-DMFT calculations with three pole approximated self-energies:

Blue fat lines show the amount of oxygen in the ZR band
Numbers show actual number of electrons in the ZR band

Energy (eV)

0.0
)2 — s La,CuOy4
0s] N
06 _0.0 | i, | e ]
-0.8 —
10" \/\/ d h
-1.2 —
A sl \ \ | / /
(0,0) (w/2,t/2) (m,m) (7t,0) (0,0) (m,0) (w/2,m/2) (0,7

Yin, Gordienko, Wan, SS, PRL 2008




M Generalized Zhang-Rice Physics

Cu0,,(d°)

Zhang-Rice Singlet (S,,,=0)

NiO(d®) CoO(d7) FeO(d") MnO(d>)

Doublet (S,,;=1/2)  Triplet (S,,,=1) Quartet (5,,,=3/2) Quintet (S,,,=2)



m NiO: LDA+DMFT compared with ARPES

Energy, eV

8 .
_ 'ﬂl ( BIS
6 ¥ W |
- /’f/ ll il"'II
4 _K .F_J,f"; — L_,__‘“_H II’
_ \H‘"'-u__ __'-__i___ — eSS r—:: it "
2 =

/

X

Spectral Intensity

Paramagnetic state
of NiO: The blue
linewidth and the
numbers show the
oxygen content and
the amount of
electrons in the ZR
band.

Q. Yin, A. Gordienko, X. Wan. SS, PRL 2008; Exp from G. A. Sawatzky et.al,
Phys. Rev. Lett. 53, 2339 (1984).




m CoO: LDA+DMFT compared with ARPES

Paramagnetic state
of CoO: The blue
linewidth and the
numbers show the
oxygen content and
the amount of
electrons in the ZR
band.

L r X Spectral Intesity

Q. Yin, A. Gordienko, X. Wan. SS, PRL 2008; Exp. from Z.-X. Shen et.al, Phys. Rev.
B 42, 1817 (1990).



M Atomic Multipletsin Photoemission of Americium

INTENSITY  (arb. units )

PHOTOELECTRON

.'-.-’""'-._
6

p
RS

|

[~

| I I | I | |

10 S 0
ENERGY BELOW Ep (eV)

Atomic multiplet structure
emerges from measured
photoemission spectra in

Am (5f%), Sm(4f5) -

Signature for f electrons localization.

after J. R. Naegele, Phys. Rev. Lett. (1984).



m Am Equation of State: DMFT Predictions

Self-consistent evaluations of total energies with
DMFT using exact diagonalization for f-shells

Accounting for full atomic multiplet structure using Slater integrals:
FO=45¢eV, F@=8¢V, FW=54¢V, F®=4 ¢V

DMFT predictions are much

better than DFT-LDA:

A Non magnetic 7 ground
state with J=0 ("F))
Equilibrium Volume:

Vireond Very=0.93

theory” " exp

Bulk Modulus: By,,,=47 GPa
Experimentally B=40-45 GPa

Q

0 . Theoretical P(V) using DMFT

0.95
0.90 |
0.85
0.80

o 0.75

> 0.70
0.65
0.60 |
0.55
0.50 |

0.45 -

Predictions for Am 1|1

_Predictions for Am Il

AV/V=2%"

Predictions for Am IV

10 20 30 40 50 60 70 80 90
Pressure [GPa]

100



® Many Body Electronic Structurefor ;F® Americium

Energy, eV

xperimental
¢ Photoemission to °
1 ' T * 1

0 | O 2 4 6
X (028) " (&) DOS, st./[eV*cell]

Experimental Photoemission Spectrum after J. Naegele et.al, PRL 1984



* Signature of Mixed Valence

4.0

3.5

3.0

V=
V=
V=

Vo
0.76V,
0.63V,

1°("Fo)->f'(3S7p)

2.5 I\
2.0 'W

1.5

f-DOS st./[eV*cell]

1.0 1

0.5 —_ Ef 4

0.0

LI I N IR B B
-1 Q9 1

| | BERE L
2 3 4 5 6
Energy, eV

U DL DL B
8 5 -4 -3 -2

Insights from DMFT: Under pressure energies of f® and f’ states
become degenerate which drives Americium into mixed valence regime.
Explains anomalous growth in resistivity, confirms ideas pushed forward
recently by Griveau, Rebizant, Lander, Kotliar, Physical Review Letters (2005)




DOS, st./[eV*cell]

m Calculated Electronic Structureusing DMFT

. uo,

XPS - - T BIS

-10 -8 -6 -4 -2
Energy, eV

XPS & BIS data after Veal and Lam,
Solid State Communications 33, 885 (1980)

DOS, st./[eV*cell]

PuO,

8 XPS \

| I
-9-8-76-5-4-3-2-101 23 45¢6 78
Energy, eV

XPS data after Butterfield et d,
Surface Science 571, 74 (2004)



* Calculating Kondo Exchange Energy

Minimal Hamiltonian for heavy fermion superconductors — Kondo lattice

H __Ztlj o j0+J 23(2 o Lo |a

ijo

Solutions can be obtained accurately using Continuous Time Quantum
Monte Carlo Method and Dynamical Mean Field Theory

Ce-122 and Ce-115 compounds t S
Antiferromagnetism competes with Increasing pressure £ ©
su pergonductivity (T, s~1-4K). - | campounds ;’f
Specific heat values range from 250 to =

750 mJ/mol*K?2.

PuCoGa, has superconducting T ~18.5K

magnetic order
local moments

screenaed mome
no magnetic on

“ ‘ = Heavy Fermi
Needs for Material Specific Input from LDA+DMFT magnetic order
calculation.




* Describing Kondo systems with LDA+DMFT

§

Framework of the realistic simulation

For given materials, e.g. CGXQ 812

LDA+DMFT (Hubbard )

= ISchrieffer-Wolff transformation

|

Hybridization function A(e) = Z V1326(E — Ek.)
k

X=Rh,Pd,Au,Ag,Cu,Ru

—>  Kondo coupling Ji

}

+ crystal-field, spin-orbit splittings

Realistic Kondo (Cogblin-Schrieffer) lattice model

DMFT with CT-QMC

as the impurity solver

( First-
principle
result for

heavy

N




1 Kondo Coupling Strength Ce 122 Compounds

CeD,Si, where
D=Mn,Fe,Co,Ni,Cu —3d
D=Ru,Rh,Pd,Ag—4d
D=0s,Au —-5d

Most widely studied, in particular
due to discovery of heavy fermion
superconductivity in CeCu,S,

(F. Seglich, et.al. Phys. Rev. Lett. 1979)

Ag,Au,Pd - 10K AFM, Rh — 40K AFM
Cu,Co,Fe,Ni,Ru,Os - PM
Mn — 379K AFM due to Mn moments




il Calculated Hybridization for Ce 122 Compounds

Inputs to CT-QMC calculated by LDA for CeX5Si,
Ale) = Z VZ6(e — €)

: X=Cu "
PAg it
0.8 i
= E 068
= =] j i
E EoLd
1 TrfD de ImA(e) 7/ 1 1
Schrieffer-Wolff transformation Jg = = I ( o )
7 Na er] e+ U
er = —2.5[eV], U = 5[eV] D = 5[eV]
G (i) 11 [P TrImA(e) 1
g ion- " { i Tel\ln) = — = €
conduction-band” Green’s function TNz ) o B — € fijp ST [,



Tracking a magnetic phase transition of CeRh25Si2

0.001 T

0.12
00008 | Ol 1 |
0.08 b |
0.06 F |
0.0006 |
_ 0.04 F |
= 0.02 |
% 0.0004 F °7C |
- T st B ]
0.0002 | e |
0 B/_
—00002 I ! | | 1
0 10 20 30 40 50 0

T [K]

Néel temperature T = 41K



Material-specific Doniach phase diagram

Artificially rescale the Kondo coupling (qualitatively imitating the pressure experiments)

90 T T T T
CeRh,S1y +—¢—
80 r CePd,Siy t---%--t ]

70 | . .
60 t i .
50 | 3 :'~ Kondo-screened -
40 o .
30 | ol -

20 A 5 .
10 AFT i
I

Ty IK]

D o 1 [ 1 1
0 g1 0.2 0.3 0.4 0.5

NElpg

CeRh2Si2 is closer to the quantum critical point than CePd2Si2



Summarizing the material-specific
Doniach phase diagrams

140 ] . .
CeRu,S15 st ®.
120 L CeCunSiy ---3--1|
- CeRhy51y —e—
i CedeSij |
100 CeAu,Siy s ertenoos
_ CeAgQSiE browafffnemall |
~ 80 CeAs 3=
= 60 -
Kondo-screened
40 7
20 7
0 . | |
0.3 0.4 0.5

heavy fermion materials|are close to the quantum critical point

The materials align like from the right to the left:
(quantum critical point)>CeRh2Si2>CePd2Si2~CeAu2Si2>CeAg2Si2>CeAs



Restoring the universal Doniach phase diagram

70 I I I I
60 - eAu2812 —
% : p....iﬁ:y.....-:

50 CePd,Si, '*"‘ -
= 40} T peeded CeCu,Siy
Z 5| CeAgESir_z_"E"-“; r_'_______%;_?_c;__R::hZSiz

20 | ’ . -

CeAs
10 - = N
(:ﬁRu')Siq
0 | | | | | s NI
-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04
NeJpg-(NgIpg)(gep)
Hund coupling effects in £~ states taken as the point where the

give us a factor of ~30% in the Kondo coupling Neel temperature vanishes



B Calculations of RKKY Interactions

2d order perturbation theory for

66, 50 Kondo impurity hamiltonian
H — _Ztij ClJraCja + ‘JK Z S (Z ClJ;'TO'o"Clo“)
\ | |

ijo

H ==y Ji S-S produces the scaling J,,, = J:N(0)

More general expression for exchange constants is obtained using
magnetic force theorem: (Lichtenstein et.al 1987)

Jng’R’ — Z Z fkj — fk+qj’ (wijG X B'T]oa|¢k—|—qj’>

a kjj’ ij o €k+CIj’

(Vg llo X BT’]Bij)@iq(R_R’) (2)

Important to understand interplay between Kondo and RKKY
Interactions for heavy fermion systems using realistic electronic
structures.




* Scaling Kondo Exchange by Pressure or Doping

Material design: Once Kondo exchange Jx and local moment interaction
(Jrkky) @recomputed one can apply pressure or doping.

A
\JK e = _—
< \ Quantum criticality?
~
T =~ Superconductivity?
JRKKY -~ =
~
—_ .
Am ratio, X
(Pul-x Amx)

Sear ching for magnetism in Plutonium:
* Pu isnon magnetic: f°> + Kondo? (Shim, Nature 2007), f¢ (Shick, PRB 2006)
* Mixing with Am expandsthe lattice up to 20%, can Pu moment be seen?




* Ji VS Jriiy IN PUu;_ Am,

Pu(2,3,4)Am(2,1,0)

4.0

3.6
3.2+
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J¢ = Iy for 0.0 = x< 0.5
= No moment due to Kondo screening
= No quantum criticality and superconductivity




B Conclusion

Combination of electronic structure and many body dynamical
mean field methods open new avenues in studying strongly
correlated systems:

Q It allows to simulate structural phases, equations of states,
volume expansions and collapses.

Q It allows to resolve Kondo resonances, atomic multiplet spectra and
mixed valence regimes.

Q It allows to study Doniach phase diagrams and quantum critical
behavior.
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