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DFT and excitation energies
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► Only highest occupied KS eigenvalue has rigorous meaning:

IHOMO −=ε
► There is no rigorous basis to interpret KS eigenvalue differences

as excitation energies of the N-particle system:

0EE jjiaia −=Ω≠−= εεω
(i=occupied, a=unoccupied)



How good are the Kohn-Sham eigenvalues really?

Savin, Umrigar and Gonze, CPL 288, 391 (1998):
using the exact xc potential from QMC

► exact KS eigenvalues are 
not the exact quasiparticle
energies, but come close.

►Goerling (1996): 
KS eigenvalue differences 
are zero-order excitation
energies in an effective 
series expansion.

►Strongly depends on the
quality of the xc potential:
LDA/GGA KS excitation 
energies are very poor.



Optical spectroscopy

● Uses weak CW laser as Probe

● System Response has peaks at 
electronic excitation energies

Marques et al., PRL 90, 258101 (2003)

Green
fluorescent
protein

Vasiliev et al., PRB 65, 115416 (2002)
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Why use TDDFT for excitations?

Instead of treating an excitation energy as just the energy
difference of two eigenstates, consider the excitation process.

TDDFT captures the intrinsically dynamical nature of an 
excitation process:

►A transition between ground and excited state is accompanied
by charge-density fluctuations.

►This causes corrections to the static KS eigenvalue differences 
due to mixing of KS single-particle levels in combination with
dynamical many-body effects.
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Static and time-dependent density-functional theory

Hohenberg and Kohn (1964): )()( r          r Vn
All physical observables of a static many-body system are,
in principle, functionals of the ground-state density

most modern electronic-structure calculations use DFT.

).(rn

Runge and Gross (1984): ),(),( tVtn r          r
Time-dependent density               determines, in principle,
all time-dependent observables.

TDDFT: universal approach for electron dynamics.

),( tn r



Time-dependent Kohn-Sham equations (1)
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Instead of the full N-electron TDSE, 
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one can solve 
N single-electron 
TDSE’s:

such that the time-dependent densities agree:
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The TDKS equations give the exact density, but not the wave function!
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►The TDKS equations require an approximation for the xc potential.
Almost everyone uses the adiabatic approximation (e.g. ALDA)

►The relevant observables must be expressed as functionals of 
the density n(r,t). This may require additional approximations.

Time-dependent Kohn-Sham equations (2)
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Hartree exchange-correlation
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Linear response

),( tr

),( t′′r

tickle the system
observe how the
system responds
at a later time

( ) ( )tVtttdrdtn ′′′′′′= ∫∫ ,,,,),( 1
3

1 rrrr χ
density 

response
perturbationdensity-density

response function



TDDFT for linear response
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Gross and Kohn, 1985:

Exact density response can be calculated as the response of a
noninteracting system to an effective perturbation:
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Frequency-dependent linear response
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Warm-up exercise: 2-level system

Consider perturbation                    acting on KS orbital),( trH ′λ :)(1 rϕ
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Time-dependent density matrix:
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2-level system

Time evolution of the off-diagonal elements to first order in λ:
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(bare KS excitation energy)

Perturbing Hamiltonian:
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adiabatic approximation

no external perturbation eigenmode



2-level system
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2-level system

12122 21
2
21

2
Hxcfωωω +=

“Small-matrix approximation”: KS poles at 21ω±2

1

21ω+ 21ω−
1→2: absorption, 2→1: stimulated emission

“Single-pole approximation”: only 1→2 transition
(Tamm-Dancoff approximation)

121221 Hxcf+= ωω

M. Petersilka, U.J. Gossmann, E.K.U. Gross, PRL 76, 1212 (1996)
H. Appel, E.K.U. Gross, K. Burke, PRL 90, 043005 (2003)



The Casida formalism for excitation energies
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Excitation energies follow 
from eigenvalue problem
(Casida 1995):
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The Casida formalism for excitation energies

The Casida formalism gives, in principle, the exact excitation energies
and oscillator strengths. In practice, three approximations are required:

► KS ground state with approximate xc potential

► The inifinite-dimensional matrix needs to be truncated

► Approximate xc kernel (usually adiabatic):
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δ,

advantage: can use any xc functional from static DFT (“plug and play”)
disadvantage: no frequency dependence, no memory 

→ missing physics (see later)



From Burke & Gross, (1998); Burke, Petersilka &Gross (2000)

Look at other 
functional approxs
(ALDA, EXX), and 
also with SPA. All 
quite similar for He. 

TDDFT linear response from
exact helium KS ground state:

Exp. SPASMA

LDA + ALDA lowest excitations

Vasiliev, Ogut, Chelikowsky, PRL 82, 1919 (1999)

full matrix

How it works: atomic excitation energies



Energies typically to within about “0.4 eV”

Bonds to within about 1%

Dipoles good to about 5%

Vibrational frequencies good to 5%

Cost scales as N2-N3, vs N5 for wavefunction methods of 
comparable accuracy (eg CCSD, CASSCF)

Available now in many electronic structure codes

General trends

challenges/open issues:
● complex excitations (multiple, charge-transfer)
● optical response/excitons in bulk insulators

Elliott, Burke, Furche, Reviews in Computational Chemistry 26, 91 (2009)



Optical Spectrum of DNA fragments

HOMO LUMO

d(GC) π-stacked pair

D. Varsano, R. Di Felice, M.A.L. Marques, A. Rubio, J. Phys. Chem. B 110, 7129 (2006). 

Can study big molecules with TDDFT ! 

Examples



Circular dichroism spectra of chiral
fullerenes: D2C84 

F. Furche and R. Ahlrichs, JACS 124, 3804 (2002). 

Examples
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The full many-body response function has poles at the exact excitation energies
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finite extended

► Discrete single-particle excitations merge into a continuum
(branch cut in frequency plane)

► New types of collective excitations appear off the real axis
(finite lifetimes)

Excitations in finite and extended systems



Excitation spectrum of simple metals:

● single particle-hole continuum
(incoherent)

● collective plasmon mode

● RPA already gives dominant 
contribution,  fxc typically small 
corrections.

plasmon

Optical excitations
of insulators:

● interband transitions
● excitons (bound

electron-hole pairs)

Metals vs. Insulators



Excitations in bulk metals

Quong and Eguiluz, PRL 70, 3955 (1993)

Plasmon dispersion of Al

►RPA (i.e., Hartree) gives already
reasonably good agreement

►ALDA agrees very well with exp.

In general, (optical) excitation processes in (simple) metals are very well
described by TDDFT within ALDA. 

Time-dependent Hartree already gives the dominant contribution, and
fxc typically gives some (minor) corrections.

This is also the case for 2DEGs in doped semiconductor heterostructures



G. Onida, L. Reining, A. Rubio, RMP 74, 601 (2002)
S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)

RPA and ALDA both bad!

►absorption edge red shifted
(electron self-interaction)

►first excitonic peak missing
(electron-hole interaction)

Silicon

Why does the ALDA fail??

Optical absorption of insulators



Optical absorption requires imaginary part of macroscopic dielectric function:
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● LRC (long-range correlation) kernel
(with fitting parameter α): ( ) 2q

f LRC
xc

α−=q

● TDOEP kernel (X-only): ( )
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Petersilka, Gossmann, Gross, PRL 76, 1212 (1996)
EXX: Kim and Görling, PRL 89, 096402 (2002)

● “Nanoquanta” kernel (L. Reining et al, PRL 88, 066404 (2002))
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pairs of quasiparticle
wave functions

matrix element of screened
Coulomb interaction (from
Bethe-Salpeter equation)

Long-range xc kernels for solids



F. Sottile et al., PRB 76, 161103 (2007)

Optical absorption of insulators, again

TDDFT/Bethe-Salpeter
Reining, Olevano, Rubio, Onida,
PRL 88, 066404 (2002)

Silicon

Kim & Görling

Reining et al.



Elementary view of Excitons

Excitons are bound electron-hole pairs created in optical excitations
of insulators.

Mott-Wannier exciton:
weakly bound, delocalized
over many lattice constants

Frenkel exciton: 
tightly bound, localized on
a single (or a few) atoms



Wannier equation and excitonic Rydberg Series
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● is exciton wave function
● derived from TDHF linearized

Semiconductor Bloch equation
● includes dielectric screening

)(rφ

Cu2O GaAs

R.G. Ulbrich, Adv. Solid State Phys. 25, 
299 (1985)R.J. Uihlein, D. Frohlich, and R. Kenklies,

PRB 23, 2731 (1981)



Exciton binding energies relative to KS band gap
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● Finite atomic/molecular system: 
single-pole approximation
involves two discrete levels

● “Single-pole approximation” for 
excitons involves two entire bands

● Excitons are a collective phenomenon!

from linearized TDDFT semiconductor Bloch equations (Tamm-Dancoff approx.):

V. Turkowski, A. Leonardo, C.A.U., 
PRB 79, 233201 (2009)



TDDFT Wannier Equation
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● assume exciton extends over many lattice constants,
replace R by r (continuous variable)

● assume parabolic bands, effective masses
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− in usual Wannier eq.



TDDFT effective nonlocal e-h interaction
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● ALDA: no bound excitons

● LRC, contact: one bound exciton, can be fitted to experiment

● Slater (approximate EXX): one bound exciton

GaAs



Exciton binding energies in meV

GaAs

β-GaN

α-GaN

CdS

CdSe

Slater EXX

17.8

28.7

11.8

7.9

8.3

Experiment

3.27

26.0

20.4

28.0

15.0

► Overbinding could be expected due to lack of correlation/screening
► But: Slater EXX not ~1/q2 (Lein 2000) which weakens e-h interaction

V. Turkowski, A. Leonardo, and C. A. Ullrich, PRB 79, 233201 (2009)



► TDDFT works well for metallic and quasi-metallic systems already
at the level of the ALDA. Successful applications for plasmon modes
in bulk metals and low-dimensional semiconductor heterostructures.

► TDDFT for insulators is a much more complicated story:

● ALDA works well for EELS (electron energy loss spectra), but
not for optical absorption spectra

● difficulties originate from long-range contribution to fxc

● some excitonic XC kernels have become available, 
but the best ones are quite complicated. 

Extended systems - Summary

$20 challenge!
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Double Excitations
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χ has poles at all excitations (single, double, ....) of many-body system

0χ has only poles only at single KS excitations

►Shifting the KS poles just gives you single excitations

►new poles at multiple excitations have to be created



The Casida formalism again
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►Frequency dependence of xc kernel makes the eigenvalue
problem nonlinear, thus allowing additional solutions

►No (true) multiple excitations within adiabatic approximation
(not even in higher-order response theory)



Double Excitations: a simple model kernel

Maitra, Zhang, Cave, and Burke, JCP 120, 5932 (2004)

Consider a single and double excitation which lie close together
and are well separated from all other excitations. Use SPA formula:
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Lowest-lying excitations notoriously difficult to calculate due to significant 
double-excitation character.
Cave, Zhang, NTM, Burke, CPL (2004)

Example: short-chain polyenes



Long-Range Charge-Transfer Excitations

Dreuw and Head-Gordon, JACS (2004)



Example: Dual Fluorescence in DMABN in Polar Solvents

“anomalous”

Intramolecular Charge Transfer (ICT)

“normal”

“Local” Excitation (LE)

TDDFT resolved the long debate on ICT structure (neither “PICT” nor “TICT”), 
and elucidated the mechanism of LE -- ICT reaction (in B3LYP)

Rappoport & Furche, 
JACS 126, 1277 (2004).

Success in predicting ICT structure – How about CT energies ??

Long-Range Charge-Transfer Excitations

4-(dimethyl)amino
benzonitrile



Eg. Zincbacteriochlorin-Bacteriochlorin
complex
(light-harvesting in plants and purple 
bacteria)

TDDFT typically severely underestimates long-range CT energies

Important process in 

biomolecules, large enough 

that  TDDFT may be only 

feasible approach !

Dreuw & Head-Gordon, JACS 126 4007, (2004).

TDDFT predicts CT states energetically well below local fluorescing states. 
Predicts CT quenching of the fluorescence (BLYP)

! Not observed !

TDDFT error ~ 1.4eV

Long-Range Charge-Transfer Excitations



We know what the exact energy for charge transfer at long range should be:

Why TDDFT typically severely underestimates this energy can be seen in SPA

-As,2 -I1

(Also, usual g.s. approxs underestimate I)

Why do the usual approximations in TDDFT fail for these excitations?

exact

i.e. get just the bare KS orbital energy difference: missing xc contribution to 
acceptor’s electron affinity, Axc,2,  and -1/R

Long-Range Charge-Transfer Excitations

~0 overlap



What are the properties of the unknown exact xc kernel that must be well-
modelled to get long-range CT energies correct ?

Exponential dependence on the fragment separation R, 

fxc ~ exp(aR)

For transfer between open-shell species, need strong frequency-dependence.

Gritsenko & Baerends (PRA, 2004), Maitra (JCP, 2005), Tozer (JCP, 2003)

Step  in Vxc re-aligns the 2 atomic 
HOMOs near-degeneracy static 
correlation, crucial double excitations 

frequency-dependence!

(It’s a rather ugly kernel…)

“LiH”
step

Long-Range Charge-Transfer Excitations



Long-Range Charge-Transfer Excitations

D
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+ TDDFT

TDHF

►TDHF has correct qualitative -1/R behavior, but misses correlation

►Popular hybrid functionals which mix in a fraction cHF will get
-cHF/R behavior (which might be OK for not too large separation)

►Range-separated functionals promising (Tawada 2004)



Polarizabilities of long-chain molecules

Rydberg states

Quantum defects, scattering phase
shifts

Double excitations 

Long-range charge transfer 

Conical Intersections

Local/semilocal approx inadequate. 

Can improve with orbital functionals
(EXX/sic), or TD current-DFT

Adiabatic approx for fxc fails.

Need frequency-dependent 
kernel derived for some cases

Summary of hot topics for TDDFT

Many more $$$ callenges!


