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DFT and excitation energies
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» Only highest occupied KS eigenvalue has rigorous meaning:

gHOMO

» There is no rigorous basis to interpret KS eigenvalue differences
as excitation energies of the N-particle system:

W, =&, &

(i=occupied, a=unoccupied)

+ Q =E -E,




E How good are the Kohn-Sham eigenvalues really?

Excitation energies of Be in hartree atomic units

Transition Final state Experiment A€y,
25 — 2p 1°p 0.100153 0.1327
1'p 0.193941
7% — 3g 278 0237304 0.2444
215 0.249127
25 — 3p 2°p 0267877 0.2694
2'p 0274233
27s — 3d 1°D 0.282744 0.2833
1'D 0.293556
2% — 45 378 0293921 0.2959
3'g 0.297279
25 — 4p 3°p 0300487 0.3046
3lp 0306314
27¢ — 4d 2°D 0309577 0.3098
2'D 0313390
28 — 55 43%s 0314429 0.3153
418 0315855

Savin, Umrigar and Gonze, CPL 288, 391 (1998):
using the exact xc potential from QMC

» exact KS eigenvalues are
not the exact quasiparticle
energies, but come close.

» Goerling (1996):

KS eigenvalue differences
are zero-order excitation
energies in an effective
series expansion.

» Strongly depends on the
quality of the xc potential:

LDA/GGA KS excitation
energies are very poor.
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Optical spectroscopy

Photoabsorption cross section

e Uses weak CW laser as Probe

e System Response has peaks at

Green
fluorescent

electronic excitation energies

protein

Na, Na, "
— | ' Exp. 1 ——— |
A A Exp. 2| —
i ) neutral ------- 1
Theory A - i anionic —-—- 7
Experiment
xperimen k " e
0 | 0 | 2 3 r ]
Energy (eV) Sl —=
2 3 4 5
Vasiliev et al., PRB 65, 115416 (2002) eV

Marques et al., PRL 90, 258101 (2003)



5 Why use TDDFT for excitations?

Instead of treating an excitation energy as just the energy
difference of two eigenstates, consider the excitation process.

TDDFT captures the intrinsically dynamical nature of an
excitation process:

» A transition between ground and excited state is accompanied
by charge-density fluctuations.

» This causes corrections to the static KS eigenvalue differences
due to mixing of KS single-particle levels in combination with

dynamical many-body effects.



@ Outline

 Introc uction

e TDDFT in a nutshell



@ Static and time-dependent density-functional theory

Hohenberg and Kohn (1964): n(r ) <>V (r )

All physical observables of a static many-body system are,
in principle, functionals of the ground-state density N(I).

‘ most modern electronic-structure calculations use DFT.

Runge and Gross (1984): N(r,t) <—=>V (r,t)

Time-dependent density N(I',t) determines, in principle,
all time-dependent observables.

mm) TDDFT: universal approach for electron dynamics.




@ Time-dependent Kohn-Sham equations (1)

Instead of the full N-electron TDSE,

i

+\7ext (t) +VV€LG)\P(r1,..., [y:t)

.. 0
|h§‘P(r1,...,rN,t)
one can solve a

N single-electron | |}j — P,
t

TDSE's:

(r,

2m

t>=[—W +v.<s<r,t>j¢j 1)

such that the time-dependent densities agree:

[y (b O = 008) =3, (0

The TDKS equations give the exact density, but not the wave function!

D (ryye, My, 1) =

L

JN

det{goj (rj,t)} + W(r,..Mt)




E Time-dependent Kohn-Sham equations (2)

,n(r’,t
A e R AL (0
) HaEree ] e;changg-correTation

» The TDKS equations require an approximation for the xc potential.
Almost everyone uses the adiabatic approximation (e.g. ALDA)

Vi (r, 1) =V,g*In(r.t)]

» The relevant observables must be expressed as functionals of
the density n(r,t). This may require additional approximations.
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 TDDFT for excitation energies: how it works



@ Linear response

oo

tickle the system ,
y observe how the

. system responds
at a later time

n(r,t) = jd3r’jdt’;((r L UV (r )

density density-density perturbation
response response function
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TDDFT for linear response

Gross and Kohn, 1985:

nl(r,t):jd3

:jd3

r'[dt” 2 (r,t, 0, V)V, (r, 1)

o[ dt” g (r ot N, (F,)

Exact density response can be calculated as the response of a
noninteracting system to an effective perturbation:

Vlsrt

V,(r,t)+ jdtjd §(t_t,)+fxc(r,t,r’,t’)

n,(r’,t’)

xc kernel:

f (rtrt)=

N, [n|r.t)
n(r',t’) i)
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Frequency-dependent linear response

many-body

response
function:

noninteracting x x( ,
, (1o, (1 )p,(r)o, (r')
rr’,m)=> (f —f, == P

response
function:

n(r,w)= jd?’r’;((r,r’, o)V, (r’, o)
= _[dSr’;(o(r,r', )V, (I, o)

0)

20,0 0)=> (OJAA(r J m)(miA(r’)

~ w—|(E, —E,)+id

+c.C.(—w)

exact excitations Q

SH

KS excitations @) ¢

1
_\r—r

V. :V1+Id3r’ +f.(r,r', )

’

n,(r', o)




E Warm-up exercise: 2-level system

Consider perturbation AH’(r,t) acting on KS orbital @ (r):

o(r,t) =c (t)o,(r) + Ac,(t)p,(r)

Time-dependent density matrix:

Pu AP Hw Acc, j

p(t) = ( ,
2’1021 12/022 Z’Clcz 2’2 |C2 |2

Equation of motion:

p=—i[H+H’" p]



E 2-level system

Time evolution of the off-diagonal elements to first order in A:

o = /
prp =@y 0, +HY) Wy = E, — &,
/921 = —] ((021 D, + H ;1) (bare KS excitation energy)

Perturbing Hamiltonian: adiabatic approximation

H'(r,t) =V, ,t)+jd2r' \r—lr’ + o (r, 0, @) |n(r',t)

no external perturbation - eigenmode

sothat Hy,(t) =Hj(t) = <12‘ Frice ‘12>{:012 (t) + p21(t)}



E 2-level system

et Pro(t) = :512 (a))e_iwt + 1512 (_w)eiwt

~ i
O+ W, —0

so that

1

_I_

1

= —<12‘ fric ‘12>{,512 :021}

e 2 o
(021 -0
:> 0 = 0% + 20, (12| f,,,.[12)

W T Wy — W



2-level system

0 = Wl + 20, (12|, [12)

HXxc
2
1 “Small-matrix approximation”: KS poles at = Wy
t WOy Wy . . -
1 1—2: absorption, 2—1: stimulated emission

0=, +(12f,, [12)

HXc

“Single-pole approximation™. only 1—2 transition
(Tamm-Dancoff approximation)

M. Petersilka, U.J. Gossmann, E.K.U. Gross, PRL 76, 1212 (1996)
H. Appel, E.K.U. Gross, K. Burke, PRL 90, 043005 (2003)



E The Casida formalism for excitation energies

Excitation energies follow A K \ X -1 0OY X
Q2

from eigenvalue problem —

(Casida 1995): K° A I|lY 0O 1\Y

Aaa,i’a’a — 5 5aa 500' ( )+ Klaa i'a’o’
1

Klaa i'a’c’ J.d rj dsr’(pl*a )¢a0' (r )|: ’ T fXC,O'O" (r J r,’ w):|¢i’0" (r ,)¢a’a’ (r ,)

For real orbitals and frequency-independent xc kernel, can rewrite this as

Z {5 §aa 500 aio + 2\/walawa| o’ Klaa i'a’'o’ JZi’a’o" — szi’a’a’

i'a’o’




E The Casida formalism for excitation energies

The Casida formalism gives, in principle, the exact excitation energies
and oscillator strengths. In practice, three approximations are required:

» KS ground state with approximate xc potential
» The inifinite-dimensional matrix needs to be truncated
» Approximate xc kernel (usually adiabatic):
stat
N (r)
n(r’)

advantage: can use any xc functional from static DFT (“plug and play”)
disadvantage: no frequency dependence, no memory

— missing physics (see later)

()=



E How it works: atomic excitation energies

TDDFT linear response from

0.92. exact helium KS ground state: LDA + ALDA lowest excitations
Continuum Atom  EXp. full marix SMA SPA wts
Be 528 494 5.07 5.43 3.50
gs ________ —— Mg 434 434 4.56 4.76 3.39
0.88 ° Ca 294 3722 3.36 3.56 2.39
4s R, e > — Sr 2.69  2.96 3.10 3.28 222
Zn 579 5.71 6.30 6.54 4.79
3p = —— cd 541 5.10 5.60 5.86 .12

0.84- 3 — =TT

Vasiliev, Ogut, Chelikowsky, PRL 82, 1919 (1999)

0.80

2p

0.76 " Singlet

2s — =

Look at other

0.72 e functional approxs
KS ALDA-SIC fxc EXPT (ALDA, EXX), and
also with SPA. All

From Burke & Gross, (1998); Burke, Petersilka &Gross (2000) : .
quite similar for He.



@ General trends

@ Energies typically to within about “0.4 eV”
#® Bonds to within about 1%

@ Dipoles good to about 5%

@ Vibrational frequencies good to 5%

@ Cost scales as N2-N3, vs N° for wavefunction methods of
comparable accuracy (eg CCSD, CASSCF)

@ Available now in many electronic structure codes

challenges/open issues:
e complex excitations (multiple, charge-transfer)
e optical response/excitons in bulk insulators

Elliott, Burke, Furche, Reviews in Computational Chemistry 26, 91 (2009)



@ Examples

Can study big molecules with TDDFT !

Optical Spectrum of DNA fragments
d(GC) n-stacked pair

A

T
]
]
I
I
]
I
]
]
1
I
1

diG C) (avg)
I 2(G+C)(avg) = ==

S (1/8V)

(=] - ] L] F= w (5]
T T T T T

D. Varsano, R. Di Felice, M.A.L. Marques, A. Rubio, J. Phys. Chem. B 110, 7129 (2006).



Examples

Ae (M 'em™)

Circular dichroism spectra of chiral
fullerenes: D.Cg,

300 600

200 - - 400

100 | L 200

0

R (10 cgs)

-100 - - -200

-200 - - =400

-600

-300

F. Furche and R. Ahlrichs, JACS 124, 3804 (2002).
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E Excitations in finite and extended systems

2(r,r’ )= lim
n—0"

2

j

(Wo|i(r ¥, )(W[A(r”)

o)

o—-E +E,+i7n
H_J
Q.

J

+cclo— -w)

The full many-body response function has poles at the exact excitation energies

Ima 4 finite

Imw A

extended

® Rew

» Discrete single-particle excitations merge into a continuum
(branch cut in frequency plane)
» New types of collective excitations appear off the real axis
(finite lifetimes)



E Metals vs. Insulators

6Has / \
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> o ?
q -10 — —)'(?‘*
. . . 12 En / \
Excitation spectrum of simple metals: A T X ¥ = Ot
Wavevector k
e single particle-hole continuum 4
(incoherent) / Optical excitations
of insulators:

e collective plasmon mode

\\\\

e interband transitions
e RPA already gives dominant e excitons (bound

contribution, f, . typically small /X\ electron-hole pairs)
corrections. /\

>



Plasmon energy (eV)

Excitations in bulk metals

25
O
23 |- O RPA
® TDLDA e
¥  Experiment
21 | v
o L
"
19} o
eV
o
17} Q'
| Sv
v
i5p 7
00 02 04 06 08 1.0
q(2m/a,)

Plasmon dispersion of Al

Quong and Eguiluz, PRL 70, 3955 (1993)

» RPA (i.e., Hartree) gives already
reasonably good agreement
» ALDA agrees very well with exp.

In general, (optical) excitation processes in (simple) metals are very well
described by TDDFT within ALDA.

Time-dependent Hartree already gives the dominant contribution, and
fXC typically gives some (minor) corrections.

This is also the case for 2DEGs in doped semiconductor heterostructures
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Optical absorption of insulators
60 | I ] | I | I
- Silicon — RPA ]
- - — TDLDA
2= T e -+ RPANLF
_ il \ & | RPA and ALDA both bad!
.':l [ : !
ol .%I. \ s =: | » absorption edge red shifted
I - . 1 (electron self-interaction)
E 30+ i | . —
N | / ‘ . | » first excitonic peak missing
N ., 7; (electron-hole interaction)
20 #-'.... A \ . —
| = .3 -"‘r":f". ]
o- f ***®u.<  Why does the ALDA fail ??
0/ |..' I | 1 | L
3 4 5 6
o [eV]

G. Onida, L. Reining, A. Rubio, RMP 74, 601 (2002)
S. Botti, A. Schindlmayr, R. Del Sole, L. Reining, Rep. Prog. Phys. 70, 357 (2007)



E Optical absorption of insulators: failure of ALDA

Optical absorption requires imaginary part of macroscopic dielectric function:

| m{gmac}: ~ Liggve (Q) | m{ZGG’}{

G,G'=0
_ — - Vs, G0
where ZZZKS"'ZKS(V"' fxc)Z’ Vo =+
0, G=0
N 2 2
q — O limit: ~( Long-range excluded, Needs ]/q
so RPA is ineffective component to

correct f ks

But ALDA is constant
for q — O:

f ALA = |im .7 (g, 0 =0)

q—0




@ Long-range xc kernels for solids

e LRC (long-range correlation) kernel fLRC(q) = — o
XC _

(with fitting parameter a):

q2

2| Z fed (g (r) [

e TDOEP kernel (X-only): f PGG (r I") —_
X )

Petersilka, Gossmann, Gross, PRL 76, 1212 (1996)
EXX: Kim and Gorling, PRL 89, 096402 (2002)

n(r )n(r’)

r—r’

e “Nanoquanta” kernel (L. Reining et al, PRL 88, 066404 (2002))

fer(0—0,G,G)= Y @ (vkek;q—0)F % (@ ). (Vk'ek’;q —0)

vek VoK’

pairs of quasiparticle
wave functions

matrix element of screened
Coulomb interaction (from
Bethe-Salpeter equation)




Im (g}

E Optical absorption of insulators, again

60 . _ »
n=1 Solid Argon . - PR | Kim & Gorling
. . 50 - —— EXX+TDEXX |
¢ Optical Absorption LDA + TDLDA
T | T | T | T T I
B ﬂ — - BSE B} ]
+ EXP |
I | —— TDDETMP | 49
! TDLDA
i
10 |
I .I ‘I ] y
,1 : g : ; s :
- i =2 . il Silicon
l =3 60 ' \ ' | ' | '
i1 L _ _
I (& . ¢ ] ., Reiningetal. RO
I 1 1 -7 I i d o . © —_—: BSEﬁ ]
D11 1|2 13 1|4 1|5 16 40 — ] R SR u
@ (eV) » .
TDDFT/Bethe-Salpeter £
Reining, Olevano, Rubio, Onida, 20 -
PRL 88, 066404 (2002) -
10 — .
F. Sottile et al., PRB 76, 161103 (2007) A
0 et T - g | |
2 3 4 5 [+)



_E Elementary view of Excitons

Excitons are bound electron-hole pairs created in optical excitations
of insulators.

Mott-Wannier exciton: Frenkel exciton:

weakly bound, delocalized tightly bound, localized on
over many lattice constants a single (or a few) atoms



E Wannier equation and excitonic Rydberg Series

V2 e

- —— |#(r) = Eg(r)
Er

2m,

OPAl(arb.units)

TPA (arb. units)

Cu,0O
T T T T pr T T T T T ]
(a) 1S 2P 3P 4LPSP6P.
Cup 1
k. i e
. P TI AT i
(b) 1S yellow series (2S)
]
n=3
f =0l
xb 4T
(S-D) 5
(1S green) A @'_D)
M g N SN T,
2030 2032 2034 2k 215 216 217
Energy (eV)

R.J. Uihlein, D. Frohlich, and R. Kenklies,

PRB 23, 2731 (1981)

e ¢(r) is exciton wave function
e derived from TDHF linearized

Semiconductor Bloch equation
e includes dielectric screening

GaAs

l]lil T T | T T T T
. - n=1 23 x .
< i l_TTl GaAs |
£ .
° g H .
e L :
— 1.0F .
! B ﬂ
o L .
=
(0] — .
3
c rD(’X 1
S 0.5 m™m U _
bS! u i
O — -
g [ E, 1

B 1,,———""' )

/S VR S R SR VAN N S S S

1.515 1.520

Energy (eV)

R.G. Ulbrich, Adv. Solid State Phys. 25,

299 (1985)



E Exciton binding energies relative to KS band gap

from linearized TDDFT semiconductor Bloch equations (Tamm-Dancoff approx.):

3 |ef's,+F (@)oo (@) = 0p (@)

g
F (w):ijdﬂd?’r' (D0, () (T, 0)@,, ()@, (r)
kg QZ ¢ck (ka xc\" 17 (ovq ¢cq
Q Q

e Finite atomic/molecular system:
single-pole approximation
involves two discrete levels

e “Single-pole approximation” for
excitons involves two entire bands

e Excitons are a collective phenomenon! v Turkowski. A. Leonardo, C.A.U.,
PRB 79, 233201 (2009)




&5 TDDFT Wannier Equation

Nonlocal effective electron-hole interaction:

Veh (R, R,, a)) — Z e—ikR I:kq (a))eiClR/
k.,q

e assume exciton extends over many lattice constants,
replace R by r (continuous variable)

e assume parabolic bands, effective masses

h2V2

G J

——¢(r) inusual Wannier eq.
&



TDDFT effective nonlocal e-h interaction

caoa___Olr—r’)
X 2 /3
(@rn2(r)f

L ALDA

| contact - 2

' f Sater __sz qoff(r)(ok (r,)‘
20 | X _ / /

| r—r no(r)no(r )
-40 fLRC _ _ a

* Arlr —r’

%0 05 1..0 fx(;:omaCt =—Ad(r—r’)

e ALDA: no bound excitons

e LRC, contact: one bound exciton, can be fitted to experiment

e Slater (approximate EXX): one bound exciton



E Exciton binding energies in meV

Slater EXX  Experiment
GaAs 17.8 3.27
B-GaN 28.7 26.0
a-GaN 11.8 20.4
CdS 7.9 28.0
CdSe 8.3 15.0

» Overbinding could be expected due to lack of correlation/screening
» But: Slater EXX not ~1/g? (Lein 2000) which weakens e-h interaction

V. Turkowski, A. Leonardo, and C. A. Ullrich, PRB 79, 233201 (2009)



@ Extended systems - Summary

» TDDFT works well for metallic and quasi-metallic systems already
at the level of the ALDA. Successful applications for plasmon modes
in bulk metals and low-dimensional semiconductor heterostructures.

» TDDFT for insulators is a much more complicated story:

e ALDA works well for EELS (electron energy loss spectra), but
not for optical absorption spectra

e difficulties originate from long-range contribution to f,

e some excitonic XC kernels have become available,
but the best ones are quite complicated.
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« Multiple and charge-transfer excitations



@ Double Excitations

2 o)=> (O]A(r ) m){mlA(r ") 0)

C.C.\—
~ w—(E,—E,)+id recto)

, @, (1), (1 oo (r ), (1)
A ’w):%‘(fp_ o w-(e,—¢€,)+id

Z has poles at all excitations (single, double, ....) of many-body system

ZO has only poles only at single KS excitations

» Shifting the KS poles just gives you single excitations

» new poles at multiple excitations have to be created




E The Casida formalism again

A K YX Q—lOX
K™ A \Y 0 1)\Y

KiaO',i'a’o" = jdsrj dsr,(oi*a (r )¢a0' (r ){‘r 1r ’ + fXC,O'O" (r ’ r,; £2)j| iI'o’ (r ,)(Da’o" (r ,)

» Frequency dependence of xc kernel makes the eigenvalue
problem nonlinear, thus allowing additional solutions

» No (true) multiple excitations within adiabatic approximation
(not even in higher-order response theory)




E Double Excitations: a simple model kernel

Maitra, Zhang, Cave, and Burke, JCP 120, 5932 (2004)

Consider a single and double excitation which lie close together
and are well separated from all other excitations. Use SPA formula:

W= (()q T 2<q‘ foc (C())‘ q>

where

2<q‘ foc(a))‘ q> — 2<CI‘ foc(a)q)‘ q> T 0— (—| oD — qu)



@ Example: short-chain polyenes

Lowest-lying excitations notoriously difficult to calculate due to significant
double-excitation character.

Cave, Zhang, NTM, Burke, CPL (2004)

_ . e 21A, Vertical excitation energies (eV) for butadiene
E.g. Butadiene, dark 2*Ay state and hexatriene

2b, L System CASPT2 ATDDFT cTD-TDDF

‘ A CsHsg 6.27 7.02 06.23
2ay K | L CeHs 5.20 5.83 .16

by 4| | e e 21A4 Vertical and 0-0 excitations for butadiene at the

‘ A0 4 ‘ estimated planar stationary point for 21Ag
|
| |

1311
’ y AFE CASPT2 ATDDFT -TD-TDD
Vertical 4.3 5.8 4.16
0-0 5.2 6.8 5.26




@ Long-Range Charge-Transfer Excitations

valence-excited state

T — T —

1 {ﬁ:: _I_r_
_I_

b
a

L

i+

charge-transfer excited state

Dreuw and Head-Gordon, JACS (2004)



@ Long-Range Charge-Transfer Excitations

Example: Dual Fluorescence in DMABN in Polar Solvents

4-(dimethyl)amino
benzonitrile

Rappoport & Furche,
JACS 126, 1277 (2004).

“normal’ “anomalous”

“Local” Excitation (LE) Intramolecular Charge Transfer (ICT)

TDDFT resolved the long debate on ICT structure (neither “PICT” nor “TICT”),
and elucidated the mechanism of LE -- ICT reaction (in B3LYP)

Success in predicting ICT structure — How about CT energies ??



@ Long-Range Charge-Transfer Excitations

TDDFT typically severely underestimates long-range CT energies

Eg. Zincbacteriochlorin-Bacteriochlorin
complex

(light-harvesting in plants and purple
bacteria)

Dreuw & Head-Gordon, JACS 126 4007, (2004).

TDDFT predicts CT states energetically well below local fluorescing states.
Predicts CT quenching of the fluorescence (BLYP)
I Not observed !

TDDFT error ~ 1.4eV



E Long-Range Charge-Transfer Excitations

Why do the usual approximations in TDDFT fail for these excitations?

We know what the exact energy for charge transfer at long range should be:

exact

@ @ ASR— oo ,|wer=15-A2-1/R

w=0,+2[q|fuaxc(®,)|q]

Why TDDFT typically severely underestimates this energy can be seen in SPA‘/

W = &2 — &1 -+ ff drdr’ ()llq(]i‘)()g (r) fuxc(r, T'w) ()1 (]i‘ )()2 (I‘)

AU
A, -l ~0 overlap
~ Il - AS:Q

I.e. get just the bare KS orbital energy difference: missing xc contribution to
acceptor’s electron affinity, A, XC,2: and -1/R

(Also, usual g.s. approxs underestimate |)



E Long-Range Charge-Transfer Excitations

What are the properties of the unknown exact xc kernel that must be well-
modelled to get long-range CT energies correct ?

» Exponential dependence on the fragment separation R,

f..~exp(aRr)

» For transfer between open-shell species, need strong frequency-dependence.

L steg
| “LiH”

Step in V, re-aligns the 2 atomic
HOMOs - near-degeneracy - static
correlation, crucial double excitations
- frequency-dependence!

(It’s a rather ugly kernel...) L 0

|
10 15

Gritsenko & Baerends (PRA, 2004), Maitra (JCP, 2005), Tozer (JCP, 2003)



E Long-Range Charge-Transfer Excitations

E. = g:‘ _geb ; +<ai ‘ fxc‘ |a> TDDFT

- <ii \rlj\ aa> TDHF

» TDHF has correct qualitative -1/R behavior, but misses correlation

» Popular hybrid functionals which mix in a fraction ¢ will get
-c,/R behavior (which might be OK for not too large separation)

» Range-separated functionals promising (Tawada 2004)



@ Summary of hot topics for TDDFT

& Polarizabilities of long-chain molecules

& Rydberg states

Local/semilocal approx inadequate.

Can improve with orbital functionals
Quantum defects, scattering phase (EXX/sic), or TD current-DFT
shifts _

Double excitations
Adiabatic approx for fxc fails.

Long-range charge transfer > Need frequency-dependent

. . kernel derived for SOme cases
Conical Intersections

Many more $$$ callenges!




