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Within TDDFT the electronic linear density response
function y is given by

where Y, is the Kohn-Sham (KS) linear density response
function, v is the Coulomb interaction and fy. is the XC
kernel defined as the functional derivative of the XC po-
tential vy,
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Variational functionals
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Phi diagrams and self-energies
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D[G,] = ;Tr{ln(l +ivG,Gy)}.




Variational functionals cont.

FID|=Tr{— D+ In(D + 1)}

The Klein Functional
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Klein Functional evaluated at a
non-interacting Green function

A V] =—iD|G |+ T |n]+ f wn+U,,

v v _ oD
[=w+ Vy—i—,
on
_ T 5D SG %
J oG, SV én




The restricted variation gives the linearized Sham-Schluter
equation which is thus seen to be and not just
perturbative!

One more variation with respect to the total Kohn-Sham potential
gives
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In the EXX approximation one chooses the
Hartree-Fock diagram for the ® functional

D[G] = (i/2) Tr[GGvV]
leading to the HF self-energy

2[G]=iGv
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TABLE 1V: The first few discrete excitation energies for Be

and Ne in TDEXX compared to experimental, TDHF, RPA
and KS transitions.

Transition KS RPA TDEXX TDHF® Exp.’
Be

25—2p  0.1312 0.2032 0.1764 0.1764 0.1940

25-s3p  0.2412 0.2547 02470 02471 0.2742

2s—4p  0.2731 0.2777 0.2749 0.2750 0.3063

2s—5p  0.2868 0.2889 0.2877  0.2878 0.3195
Ne

o2p—3s  0.6585 0.6675 0.6803 0.6739 0.6190

2p—4s  0.7793 0.7812 0.7827 0.7818 0.7268

29565 - D813d (8141 O0814T 08159 0.7593

“From Refs. 40,48.
" Adopted from Rels. 40,48.
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But we can still obtain the total energy from the
response function by applying the Hellman-Feynman
theorem with respect to the strength of the Coulomb
interaction

Ue = (i/2) TrIv { X - Xgs}]
and

E. = [ (dVN) uc

or, because f, (EXX) is linear in the strength of the
Coulomb interaction,

E. =-(i/2) Tr[ v (v + )1 In{1- (v + f,) Xy} + VX5 ]



Total energies of the electron gas (Hartree).

)

1.00
2.00
3.00
4.00
5.00
6.00

RPA

-0.079
-0.062
-0.053
-0.047
-0.042
-0.039

ec2x

0.0242
0.0242
0.0242
0.0242
0.0242
0.0242

fxcorr

-0.006
-0.008
-0.010
-0.011
-0.012
-0.013

=6

-0.061
-0.046
-0.038
-0.034
-0.030
-0.028

Ceperly

-0.060
-0.045
-0.037
-0.032
-0.028



TABLE I: Correlation energies from a few different approx-
imations. For a consistent comparison with CI results the
correlation energy is here defined as the difference between
the total energy and the Hartree-Fock energy. Where neces-
sary, a fourth decimal has been added in parentheses in order
to compare different approximations. (a.u.)

fxe:| TDEXX AEXX TDEXX AEXX |RPA [MP2°|CI¢
vee:|EXX  EXX  RPAX RPAX |RPA |MP2
He [0.044(5) 0.044(5) 0.044(6) 0.044(6)[0.083[0.047 [0.0420
Be [0.102(0) 0.101(7) 0.103(3) 0.102(8)]0.181]0.124 |0.0943
Ne |0.3880  0.377(1) 0.3903  0.377(8)]0.596 |0.480 |0.3905
Ar [0.7278  0.7106 0.7287 0.7112 [1.091]0.844 |0.7225

bFrom Ref. 16.
From Ref. 17.



he Peuckert Iterative Procedure (1978)

e Start from any approximation to the exchange-
correlation energy E,. as a function of the
strength of the Coulomb interaction.

® Form the derivatives v,. = OE, /On and
f.. = 0v,./on.

® Calculate the linear density response function X
from X=X+ X, (v+f.)X.

e Calculate a new interaction energy U, . from
U.=(/2) TrfvX].

® Get a new exchange-correlation energy E,. by
integrating with respect to the Coulomb int. ....



In order to substantially simplify the calculations,
two approximations have been made

® The energy dependence of the kernel f, has
been neglected.

® The density dependence of the f, kernel has
been neglected.

® These are NOT approximations for two-electron
systems.




HE

The equation for the RPA potential reads
XKS VXC — '2' G ZGW G / Where

The equation for the RPAX potential reads

XKS VXC — '2' G ZGGF G / Where

2car = 1GWggr=i1GV[1l-(v+f) X ]!



Notice that the same result could have been
obtained as follows: knowing 7xc and thus X from

X=X+ Xec(V+II)X

we can obtain the irreducible polarizability P from
X=P+PvX

and an approximate local vertex / from
P = - GGI

The exact expression for the self-energy then yields

Seoy = IGWIr=iGv[l—(v+F)Xe ]



Correlation potentials for
the atoms He, Be, and
Ne.

MP2 is from Mgiller-
Plesset perturbation
theory — second order
exchange processes.

Exact DFT potentials from
Umrigar et. al.




TABLE II: Ionization potentials obtained from the highest
occupied KS eigenvalue of different KS potentials. (a.u.)

Atom

MP2

RPA

RPAX

Exp.

0.918
().5049
0.851
().253
(0.591

().893
0.357
0.657
().302

().558

().902
().354
(.796
0.297
0.590

().904
().340
(0.787
(0.282

(i —

O.077

().904
0.343
0.792
0.281

().579Y




TABLE III: Static polarizabilities calculated from y in the
RPA and the TDEXX approximation. The latter has been

evaluated using different potentials (EXX, RPA, RPAX, and

Exact). (a.u.)

Jc:

'1-1:-{ C )

TDEXX

RPA

RPAX

Exact

RPA
RPA

Litt.”

He
Ne
Ar
Be
Mg

1.322
2.372
10.74
45.64
81.66

1.348
2.613
10.94
41.04
71.67

1.349
2.555

40.49

1.225
2.424
9.839
28.99

51.56

1.38
2.67
11.08
37.8
71.53

Lp ]
“From Retf.'




TABLE IV:
v In the RPA, the AEXX and the TDEXX approximation.

The latter has been evaluated using different potentials ( EXX,

RPA, RPAX, and Exact). (a.u.)

van der Waals or (s coefficients calculated from

frer] TDEXX AEXX| RPA|[ Litt.

vxe:| EXX RPA RPAX Exact| RPAX| RPA

He | 1.375 1.414 1411 1.411] 1.411 | 1.206( 1.4587
Ne | 5506 6.091 6.191 6.021] 6.161 | 5.523| 6.383"
Ar| 61.88 61.27 63.19 - 63.11 | 53.69| 64.3
Be | 282.8 226.7 235.3 231.5| 236.5 | 142.0 214"

Mg| 767.5 617.8 - 632.2 | 385.6| 627"

“From Ref. 20.
"From Ref. 21.




Conclusions

® The two major approximations have to be
checked much more carefully in other
systems.

e We now probably have the most accurate
and feasible recipe for calculating an
accurate Density Functional ground-state

potential from which many important

ohysical properties can be calculated with a

nigh degree of accuracy.

* THANK YOU FOR YOUR ATTENTION!



The response function of the
LW functional at the HF level
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