

Drake Deming
NASA's Goddard Space Flight Center

We want to find:

a habitable, nearby, transiting, SuperEarth

Finding them with an all-sky survey

Characterizing their atmospheres using JWST

Based on PASP 883, 952 (2009)

Contributors: Sara Seager, Josh Winn, Eliza Miller-Ricci, Mark Clampin, Don Lindler, Tom Greene, Dave Charbonneau, Greg Laughlin, George Ricker, Dave Latham, and Kim Ennico

~ 30% of FGKM stars host superEarths, based on: Microlensing (Gould et al. 2006, ApJ 644, 237) Radial Velocity Surveys (Mayor et al. 2009, ApJ 493, 639)

Their atmospheres initially contain: H₂, H₂O, CO, CO₂

Elkins-Tanton & Seager 2008 ApJ 685, 1237 Schaefer & Fegley 2009, astro-ph/0909.4050 Miller-Ricci et al. 2009, ApJ 690, 1056

Both thermal and non-thermal atmospheric escape rates are uncertain... so we here adopt the intermediate H₂ case of Miller-Ricci et al.

Exploit transits to characterize SuperEarth Atmospheres...

Can we characterize the Atmosphere of a SuperEarth using transits...? A habitable one??

The MEarth Project

Charbonneau et al.

- Using 8 X 16-inch telescopes to survey the 2000 nearest M-dwarfs for rocky planets in their habitable zones
- Converted an existing abandoned building on Mt Hopkins, AZ
- Fully operational; southern version planned
- These planets will be amenable to spectroscopic follow-up to search for atmospheric biomarkers

The First MEarth Super-Earth

Everything from here on is simulation.... of TESS and JWST

Stars in 2000 pc³ centered on the Sun F5-M8, 200 pc scale height in Z number density varying with spectral type One planet per star, from Earth to Jupiter in size Equal numbers per log R half water-dominated, half silicate Equal numbers per log a (with stellar luminosity scaling) Record the coordinates and transit probability ... and each planet's equilibrium temperature

Find them with TESS

5. TESS Instrumentation Fulfills Science Requirements

Six Camera Ass'y

TESS Characteristic	Value or Range
CCD Detectors	Quad MIT/LL CCID-68s (4000x4000 imaging array @ 15μm/pixel)
CCD Mode	Shutterless: 2 s integrate, 2 ms frame transfer
CCD Space Flight History	6 years operation on HETE-2 (as CCID-20) Very low hot pixel rate in equatorial orbit
Lens Aperture	12.7 cm
Pixel Scale	Rv assumed possible
Camera Field-of-View	18° x 18° For d < 35 pc
Number of Cameras	6
Ensemble Field-of-View	$54^{\circ} \times 36^{\circ} = 1944 \text{ deg}^2$
Pass Band	Simulate observations
Data Downlink Rate	10 Gbytes day ¹ of each transit at
Launch Date	10-minute resolution,
Survey Duration	2 years for All Sky and 96-minute sampling

Two transits: P < 36 days

Apply S/N criteria

The nearest transiting habitable SuperEarth orbits an M-dwarf

JWST Science Instruments

- Near Infrared Camera (NIRCam) Univ. of Arizona
 - Deep, wide field imager (0.6 μm 5 $\mu\text{m})$ $R{\sim}\,5$
- Near Infrared Spectrograph (NIRSpec) ESA
 - . Multi-Object Spectroscopy (0.6 μm 5 $\mu\text{m})$ R=100 3000
- Mid-Infrared Instrument (MIRI) JPL/ESA
 - Mid-infrared imaging (5 μ m 28.5 μ m) R ~ 2500
- Fine Guidance Sensor (FGS) & Tunable Filter Imager CSA
 - Fine Guidance Sensor (0.6 μ m 5 μ m)
 - Tunable Filter Imaging (1.6 μ m 4.9 μ m

from Mark Clampin

Observe the systems with JWST....

Transmission spectroscopy using NIRSpec (2-5 microns) Emission filter photometry at eclipse (15 microns), MIRI Miller-Ricci atmosphere models:

Sensitivity from instrument and telescope design review photon noise, read noise, thermal background, etc. pointing jitter, intra-pixel effects, flat-fielding error Observe every transit/eclipse in JWST's 5-year mission account for field-of-regard

Compute total S/N for each SuperEarth in each mode

Results for 15 microns (CO₂)

Results for 2-5 micron transmission spectroscopy (CO₂ and water)

Example of carbon dioxide in a habitable SuperEarth

Conclusions and comments

- Uncertainties are primarily astrophysical, not technological
 - Nature of SuperEarth atmospheres
 - Frequency of HZ SuperEarths
- IR radial velocities are needed
- Some aspects of these simulations may be too pessimistic (don't allow for multi-planet systems)
- Other improvements are possible
 - Atmospheric composition from the bulk composition
- It will be difficult, but possible, to measure the temperature and molecular abundances in one to four habitable, transiting, superEarths