Planetesimal growth and planet formation

> Anders Johansen

Planet formation Planetesimals

Streaming instability Metallicity

Self-gravity

Conclusions

Planetesimal growth and planet formation

Anders Johansen (Leiden University → Lund)

"Exoplanets Rising: Astronomy and Planetary Science at the Crossroads" Kavli Institute for Theoretical Physics, March–April 2010 Collaborators: Andrew Youdin, Thomas Henning, Hubert Klahr, Wlad Lyra, Mordecai-Mark Mac Low, Jeff Oishi

Exoplanet-metallicity connection

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability Metallicity

Self-gravity

Conclusions

 First planet around solar-type star found in 1995

(Mayor & Queloz 1995)

- Today more than 400 exoplanets known
- ⇒ Exoplanet probability increases sharply with metallicity of host star

Exoplanet-metallicity connection

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability Metallicity

Self-gravity

Conclusions

 First planet around solar-type star found in 1995

(Mayor & Queloz 1995)

- Today more than 400 exoplanets known
- ⇒ Exoplanet probability increases sharply with metallicity of host star

Hydrodynamical models of planetesimal formation exhibit similar sharp dependence on metallicity

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs from dust grains that collide and stick together

Dust to planetesimals

 $\mu m \rightarrow cm:$ contact forces during collision lead to sticking cm \rightarrow km: \ref{min}

Planetesimals to protoplanets $km \rightarrow 1,000 \ km$: gravity

Protoplanets to planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs from dust grains that collide and stick together

Dust to planetesimals

 $\mu m \rightarrow cm:$ contact forces during collision lead to sticking cm \rightarrow km: \ref{min}

Planetesimals to protoplanets $km \rightarrow 1,000 \ km$: gravity

Protoplanets to planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs from dust grains that collide and stick together

Oust to planetesimals

 $\mu m \rightarrow cm:$ contact forces during collision lead to sticking cm \rightarrow km: \ref{min}

Planetesimals to protoplanets $km \rightarrow 1,000 \ km$: gravity

Protoplanets to planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs from dust grains that collide and stick together

Dust to planetesimals

 $\mu m \rightarrow cm:$ contact forces during collision lead to sticking cm \rightarrow km: \ref{min}

Planetesimals to protoplanets $km \rightarrow 1,000 \ km$: gravity

Protoplanets to planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs from dust grains that collide and stick together

Dust to planetesimals

 $\mu m \rightarrow cm:$ contact forces during collision lead to sticking cm \rightarrow km: \ref{min}

Planetesimals to protoplanets $km \rightarrow 1,000 \ km$: gravity

Protoplanets to planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Planetesimal hypothesis of Safronov 1969:

Planets form in protoplanetary discs from dust grains that collide and stick together

Dust to planetesimals

 $\mu m \rightarrow cm:$ contact forces during collision lead to sticking cm \rightarrow km: \ref{min}

2 Planetesimals to protoplanets $km \rightarrow 1,000 \ km$: gravity

Protoplanets to planets

Recipe for making planets?

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals Streaming instability

Metallicity

Self-gravity

Conclusions

- Hydrogen and Helium (98,5%)
- Dust and ice (1,5%)
- Coagulation (dust growth)
- \Rightarrow Planets?

(Paszun & Dominik)

⁽Blum & Wurm 2008)

Recipe for making planets?

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Hydrogen and Helium (98,5%)
- Dust and ice (1,5%)
- Coagulation (dust growth)
- \Rightarrow Planets? No

"Meter barrier" :

- Growth to mm or cm, but not larger
- The problem: *small dust grains stick readily with each other – sand, pebbles and rocks do not*

(Paszun & Dominik)

(Blum & Wurm 2008)

Overview of planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals Streaming instability

Metallicity

Self-gravity

Protoplanetary discs

Dust grains

Gas giants and ice giants

Terrestrial planets

+ More than 400 exoplanets

+ Countless asteroids and Kuiper belt objects

+ Moons of giant planets

Dwarf planets

Planetesimals

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Kilometer-sized objects massive enough to attract each other by gravity (two-body encounters)
- Assembled from colliding dust grains
- Building blocks of planets
- Problems:
 - Pebbles, rocks and boulders:
 - drift rapidly through the disc
 - have terrible sticking properties
 - Protoplanetary discs are turbulent

William K. Hartmann

Planetesimals

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Kilometer-sized objects massive enough to attract each other by gravity (two-body encounters)
- Assembled from colliding dust grains
- Building blocks of planets
- Problems:
 - Pebbles, rocks and boulders:
 - drift rapidly through the disc
 - have terrible sticking properties
 - Protoplanetary discs are turbulent

Planetesimal formation must

- proceed quickly
- Inot rely on sticking between large solids
- operate in a turbulent environment

William K. Hartmann

Streaming instability

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Youdin & Goodman 2005:

(see also Goodman & Pindor 2000)

- Gas orbits slightly slower than Keplerian
- Particles lose angular momentum due to headwind
- Particle clumps locally reduce headwind and are fed by isolated particles

Clumping

Strong clumping in non-linear state of the streaming instability (Youdin & Johansen 2007; Johansen & Youdin 2007; also Bai & Stone in preparation)

Why clump?

Planetesimal growth and planet formation

Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity Conclusions

Clumping in 3-D

Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Particle clumps have up to 100 times the gas density
- Clumps dense enough to be gravitationally unstable
- But still too simplified:
 - \Rightarrow no vertical gravity and no self-gravity
 - \Rightarrow single-sized particles

This talk

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

 \Rightarrow 3-D hydrodynamical simulations of particle sedimentation, including multiple sizes, clumping and self-gravity

I will show that:

This talk

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

 \Rightarrow 3-D hydrodynamical simulations of particle sedimentation, including multiple sizes, clumping and self-gravity

I will show that:

- The streaming instability can provide the necessary ingredients for planetesimal formation
- Clumps readily contract gravitationally to form 100 km radius planetesimals

This talk

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

 \Rightarrow 3-D hydrodynamical simulations of particle sedimentation, including multiple sizes, clumping and self-gravity

I will show that:

- The streaming instability can provide the necessary ingredients for planetesimal formation
- Clumps readily contract gravitationally to form 100 km radius planetesimals

Clumping depends on metallicity in a way that matches observed correlation between host star metallicity and exoplanets

Sedimentation and clumping

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Sedimentation of 10 cm rocks:

• Gas mass decreases with time

 Solar metallicity: puffed up mid-plane layer

• Clumping above $Z \approx 0.02$

Sedimentation and clumping

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity Conclusions

Sedimentation of 10 cm rocks:

 Gas mass decreases with time

 Solar 0.030 metallicity: puffed up № 0.025 mid-plane layer 0.020

• Clumping above $Z \approx 0.02$

Why is metallicity important?

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

- Gas orbits slightly slower than Keplerian
- Particles lose angular momentum due to headwind
- Particle clumps locally reduce headwind and are fed by isolated particles

• Clumping relies on particles being able to accelerate the gas towards Keplerian speed

Dependence on metallicity

Planetesimal growth and planet formation

> Anders Johansen

Planet formation Planetesimals Streaming instability Metallicity

Self-gravity Conclusions • Particles sizes 3–12 cm at 5 AU, 1–4 cm at 10 AU • Increase pebble abundance $\Sigma_{\rm par}/\Sigma_{\rm gas}$ from 0.01 to 0.03

Planetesimal formation movie

Planetesimal formation movie

Johansen, Youdin, & Mac Low (2009)

The "clumping scenario" for planetesimal formation

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Oust growth by coagulation to a few cm

Spontaneous clumping through streaming instabilities

Gravitational collapse to 100 km radius planetesimals

The "clumping scenario" for planetesimal formation

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Oust growth by coagulation to a few cm

Spontaneous clumping through streaming instabilities

Gravitational collapse to 100 km radius planetesimals

(see John Chambers's talk today for alternative turbulent concentration scenario)

From planetesimals to giant planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Form km-scale planetesimals from dust grains
- e Planetesimals collide and build 10 M_⊕ core
- Run-away accretion of several hundred Earth masses of gas

(talks by David Stevenson, Jack Lissauer)

Metallicity of host star

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

 First planet around solar-type star found in 1995

(Mayor & Queloz 1995)

- Today more than 400 exoplanets known
- Exoplanet probability increases sharply with metallicity of host star

30 (Gonzalez 1997: Santos et al. 2004) of planet hosts Fischer & Valenti 2005) 20 Percentage 10 0 -0.50.5 0 [Fe/H]

Z = 0.01

0.02 0.03

- ⇒ Expected due to efficiency of core accretion (Ida & Lin 2004; Mordasini et al. 2009)
- ⇒ ... but planetesimal formation may play equally big part (Johansen, Youdin, & Mac Low 2009)

Metallicity of host star

- ⇒ Expected due to efficiency of core accretion (Ida & Lin 2004; Mordasini et al. 2009)
- ⇒ ... but planetesimal formation may play equally big part (Johansen, Youdin, & Mac Low 2009)

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Clumping through streaming instabilities depends *only* on mid-plane dust-to-gas ratio (metallicity), *not* on absolute column density
- However, metallicity is not a constant of a given protoplanetary disc

Protoplanetary discs can obtain critical metallicity by:

starting out with high metallicity

 \Rightarrow

- 2 photoevaporating the gas
 - \Rightarrow

 \Rightarrow

Itransport solids radially

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Clumping through streaming instabilities depends *only* on mid-plane dust-to-gas ratio (metallicity), *not* on absolute column density
- However, metallicity is not a constant of a given protoplanetary disc

Protoplanetary discs can obtain critical metallicity by:

- starting out with high metallicity
 - $\Rightarrow \mathsf{born} \ \mathsf{rich}$
- Photoevaporating the gas

 \Rightarrow

 \Rightarrow

transport solids radially

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Clumping through streaming instabilities depends *only* on mid-plane dust-to-gas ratio (metallicity), *not* on absolute column density
- However, metallicity is not a constant of a given protoplanetary disc

Protoplanetary discs can obtain critical metallicity by:

- starting out with high metallicity
 - $\Rightarrow \mathsf{born} \ \mathsf{rich}$
- Photoevaporating the gas
 - $\Rightarrow \mathsf{get} \ \mathsf{rich}$

 \Rightarrow

transport solids radially

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

- Clumping through streaming instabilities depends *only* on mid-plane dust-to-gas ratio (metallicity), *not* on absolute column density
- However, metallicity is not a constant of a given protoplanetary disc

Protoplanetary discs can obtain critical metallicity by:

- starting out with high metallicity
 - $\Rightarrow \mathsf{born} \ \mathsf{rich}$
- Photoevaporating the gas
 - $\Rightarrow \mathsf{get} \ \mathsf{rich}$
- transport solids radially
 - $\Rightarrow \mathsf{restructure} \ \mathsf{debt}/\mathsf{mortgage}$

Low and high metallicity planet formation

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

. . . .

High metallicity systems

Planet formation is rapid

• Lots of time to accrete gas

 Moderate mass planets migrate and become hot Jupiters Solar (or lower) metallicity systems

 Planet formation triggered by photoevaporation (Throop & Bally 2005; Alexander & Armitage 2007)

• Little gas when planets form, so gas giants rare and no strong migration

Low and high metallicity planet formation

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

••••

High metallicity systems

• Planet formation is rapid

• Lots of time to accrete gas

 Moderate mass planets migrate and become hot Jupiters Solar (or lower) metallicity systems

 Planet formation triggered by photoevaporation (Throop & Bally 2005; Alexander & Armitage 2007)

• Little gas when planets form, so gas giants rare and no strong migration

⇒ Predict fewer close in planets in low metallicity systems and that low mass planets can form around low metallicity stars

⇒ Need better statistics of low metallicity systems and low mass planets

Low metallicity planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation Planetesimals Streaming instability Metallicity Self-gravity Conclusions

- \Rightarrow Three planets found
- ⇒ All three planets orbit the most metal rich stars of the sample
- $\Rightarrow No hot Jupiters$ (a = 1.76, 1.78, 5.5 AU)

Low metallicity planets

Planetesimal growth and planet formation

> Anders Johansen

Planet formation Planetesimals Streaming instability Metallicity Self-gravity Conclusions

Santos et al. (A&A accepted): monitored 100 metal poor stars for planets.

- \Rightarrow Three planets found
- ⇒ All three planets orbit the most metal rich stars of the sample
- $\Rightarrow No hot Jupiters$ (a = 1.76, 1.78, 5.5 AU)

This is a spectacular confirmation that metallicity matters even for systems of intrinsically low metallicity

Conclusions

Planetesimal growth and planet formation

> Anders Johanser

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Clumping through streaming instability relevant because:

- Based on first principles hydrodynamical calculations
- Allows formation of planetesimals from pebbles and rocks
- Efficiency depends very strongly on metallicity and increases sharply above solar metallicity
- Can be trigged by photoevaporation, opening a new mode of planet formation around metal poor stars

(Johansen, Youdin, & Mac Low 2009)

Collision speeds

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

Relative speeds of particles measured in single grid cells:

- Typical collision speed 2–5 m/s
- Only 5% of collisions faster than 10 m/s
- Collision speed in dense clumps below 2 m/s

Laundry list

Planetesimal growth and planet formation

> Anders Johansen

Planet formation

Planetesimals

Streaming instability

Metallicity

Self-gravity

Conclusions

• How do cm-sized pebbles and rocks form out of dust grains?

(Brauer et al. 2008; Zsom et al. 2010)

- How do pebbles survive radial drift in low metallicity discs? (Takeuchi & Lin 2002; Brauer et al. 2007)
- What is the role of collisional fragmentation and coagulation during gravitational collapse
- What is the relative role of small scale turbulent concentrations and large scale streaming instabilities? (Cuzzi et al. 2008; John Chambers's talk at this meeting)
- What is the size spectrum of newly formed planetesimals? Morbidelli et al. 2009: Asteroids were born big Core accretion and certain debris discs: Planetesimals should be small