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Eccentricity-period distribution

Evidence for tidal circularization
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Eccentricity-period distribution

record 0.79 days WASP-19b.       WASP-12b - overflowing its Roche lobe?
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Reasons for getting your tidal evolution model right

 Understanding the efficiency of the tidal dissipation process helps us to constrain 
   aspects of the theory of planet formation and subsequent dynamical evolution

 timing: did the planet arrive at its present location before or after the PMS?
what role did the proto-stellar spin play? (Dobbs-Dixen et al 2004)

 disk migration or something else (Kozai ???)

 what role did/do the magnetic fields of both the star and planet play?

 are some planets swallowed by the star ? 
 are we seeing ``the last of the Mohecans’’ (al la DNC Lin: WASP-12b)

 how much has the original eccentricity distribution been modified by tides?
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Reasons for getting your tidal evolution model right

 has Kozai forcing by companion (star or planet) + tides played a significant role in shaping
   period distribtion of short-period planets?

 at what stage in its orbital evolution is a Kozai-forced system like HD 80606? (e=0.93)

 what role do tides play in planet inflation ? (other mechanisms: eg. magnetic fields, stellar insolation)

 for non-circular short-period high-density planets, what can we say about their internal
   structure?

 what about water worlds?
 in between (rocky + oceans)

 how do tides influence the existence or otherwise of moons ?
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 what can we deduce about the internal structure of short-period planets with 
   companions (one needs a low enough planet Q-value for fixed point to be reached)

 do planets form with or without cores? 
 some do and some don’t ?

 The HAT-P-13 system - the Rossetta stone for internal structure ? (G. Laughlin)

 not if it is significantly inclined (probably it is not…)

  can we use the same theory to guide our search for low-mass companion planets?

 why does GJ 436 (a Neptune-sized object) have such a large eccentricity ? 
Does it simply have a large Q-value?  (a=0.029 AU, e=0.15, a/Rp=160)
Or does it have a low-mass companion hiding under an inclined rock?

Reasons for getting your tidal evolution model right
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Reasons for getting your tidal evolution model right

 how do known exoplanets differ from Solar System planets of similar mass ?

 are there Mercury analogues (eg 3:2 spin-orbit resonance) - most surely there are!

 is there evidence for tides ``breaking’’ mean-motion resonances between more
   distant companions?
   
 what can we deduce about the structure and damping efficiency of host stars?

 Is this consistent with what we know about binary pairs?
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In the beginning…

Phil. Trans. Roy. Soc. Lon.

Equilibrium tide models

Equilibrium tide: assumes hydrostatic equilibrium (only really true for circular,
synchronous spin-aligned systems but reasonable for modest eccentricities)
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DARWIN 1879

Jeffreys 1961, Goldreich 1963 

bulge potential + Lagrange
planetary equations

first-order in eccentricity

constant lag angle
Energy, angular momentum 
           work done, torque

HUT 1981

constant lag time

Closed-form in eccentricity,
spin, first-order in inclination

Equilibrium tide models
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EGGLETON (et al) 1998

fluid-dynamical description

Fluid shear in rotating frame = constant lag time

ALEXANDER 1973

Closed-form in eccentricity,
spin, AND inclination

Equilibrium tide models
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Constant lag angle versus constant lag time… 

                   these days: Goldreich vs Hut / Eggleton.

And then there’s that hybrid model many people use…

Equilibrium tide models
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Constant lag angle versus constant lag time: DARWIN

R

rD

Potential due to bulge:

Diana

m*

mp

Rp

Equilibrium tide models

D
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Constant lag angle versus constant lag time: DARWIN

Potential due to bulge with each tidal component lagged:

Diana

Spin of distorted body faster than orbital motion: tidal bulge LEADs line of centres: orbit is torqued

Equilibrium tide models
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Constant lag angle: GOLDREICH

Using Lagrange’s planetary equations to write down rates of
change of orbital elements, then putting eM=eD, aM=aD and
averaging over the orbital period, gives

Spin of distorted body faster than orbital motion: tidal bulge LEADs line of centres: orbit is torqued

and related expressions for semimajor axis and apsidal angle.

Equilibrium tide models
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Constant lag angle: GOLDREICH 1963

Using Lagrange’s planetary equations to write down rates of
change of orbital elements, then putting eM=eD, aM=aD, gives

lag angles

Equilibrium tide models



16

Equilibrium tide models

Q-value: Goldreich & Soter 1966:

Goldreich’s argument for equal lag angles was based on the fact that
for the Earth, Q varies by less than a factor of four over a range of one cycle
per second to one cycle per year (Goldreich 1963)

the tidal dissipation function 1/Q defined by

where E0 is the maximum energy stored in the tidal distortion and
-dE/dt is the energy lost during one complete cycle.

Equal lag angles: a single Q-value
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Equilibrium tide models

Q-value: Goldreich & Soter 1966:

= sign of term with largest coeff
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Equilibrium tide models

Q-value: Goldreich & Soter 1966:

= sign of term with largest coeff

-63/4 for synchronized spin
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Equilibrium tide models

HUT 1981

The Mardling & Lin swindle

(``swindle’’: a fraudulent scheme or action)

q=m2/m1
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Equilibrium tide models
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Equilibrium tide models

Hut, Mardling & Lin

Goldreich

See also Leconte, Chabrier, Baraffe, Levrard 2010…

Here I have taken constant semi=0.03 AU
and synchronous rotation, with

for Goldreich:

For Hut and M&L, 
determined numerically
(time when e=e(0)/2.718), with

nIo=1.8 day, QJ=3.6x104
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Equilibrium tide models

e(0)

Mardling & Lin

Hut

Goldreich

constant peri - 0.03 AU
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