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Eccentricity-period distribution
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Fvidence for tidal circularization



Eccentricity-period distribution
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record 0.79 days WASP-19b. WASP-12b - overflowing its Roche lobe?

m, = 1.15M



Reasons for getting your tidal evolution model right

= Understanding the efficiency of the tidal dissipation process helps us to constrain
aspects of the theory of planet formation and subsequent dynamical evolution

timing: did the planet arrive at its present location before or after the PMS?
what role did the proto-stellar spin play? (Dobbs-Dixen et al 2004)

disk migration or something else (Kozai 7?)

what role did/do the magnetic fields of both the star and planet play?

are some planets swallowed by the star?

are we seeing " the last of the Mohecans” (al la DNC Lin: WASP-12b)
how much has the original eccentricity distribution been modified by tides?
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Reasons for getting your tidal evolution model right

* has Kozal forcing by companion (star or planet) + tides played a significant role in shaping
period distribtion of short-period planets?

at what stage in its orbital evolution is a Kozai-forced system like HD 806067 (e=0.93)

= what role do tides play in planet inflation ? (other mechanisms: eg. magnetic fields, stellar insolation)

= for non-circular short-period high-density planets, what can we say about their internal
structure?
what about water worlds?
in between (rocky + oceans)

= how do tides influence the existence or otherwise of moons ?



Reasons for getting your tidal evolution model right

= what can we deduce about the internal structure of short-period planets with
companions (one needs a low enough planet Q-value for fixed point to be reached)
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enlargement of (a) (c)

do planets form with or without cores?
some do and some don't ?
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The HAT-P-13 system - the Rossetta stone for internal structure ? (G. Laughlin)
not if it is significantly inclined (probably it is not...)

= can we use the same theory to guide our search for low-mass companion planets?
why does G| 436 (a Neptune-sized object) have such a large eccentricity ?

Does it simply have a large Q-value? (a=0.029 AU, e=0.15, a/R,=160)
Or does it have a low-mass companion hiding under an inclined rock?



Reasons for getting your tidal evolution model right

* how do known exoplanets differ from Solar System planets of similar mass ?
= are there Mercury analogues (eg 3:2 spin-orbit resonance) - most surely there are!

" is there evidence for tides " "breaking” mean-motion resonances between more
distant companions!?

= what can we deduce about the structure and damping efficiency of host stars?

s this consistent with what we know about binary pairs?



Equilibrium tide models

Equilibnum tide: assumes hydrostatic equilibrium (only really true for circular,
synchronous spin-aligned systems but reasonable for modest eccentricities)

In the beginning...

Phil. Trans. Roy. Soc. Lon.

XX. On the Secular Changes in the Elements of the Orbit of a Satellvte revolving
about a Tidally distorted Planet.

By G. H. Darwin, F.R.S.
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Equilibrium tide models

bulge potential + Lagrange DARWIN 1879

planetary equations

first-order in eccentricity constant |ag time

A

HUT
Jeffreys 1961, Goldreich 1963 UT 1981
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constant lag angle

Energy, angular momentum
——» work done, torque

Closed-form in eccentricity,
spin, first-order in inclination



Equilibrium tide models

ALEXANDER 1973

FGGLETON (et al) 1998

l

fluid-dynamical description

Fluid shear in rotating frame = constant lag time

Closed-form in eccentricity,
spin, AND inclination



Equilibrium tide models

Constant lag angle versus constant lag time...

these days: Goldreich vs Hut / Eggleton.

And then there's that hybrid model many people use...



Equilibrium tide models

Constant lag angle versus constant lag time: DARWIN

Potential due to bulge:

Gy = ) (R) (7)Ao
m.\ (R, 3 R, 3 _
= kyp (ﬁp) (g) (%) ;%1 Cjkm(ep, ep) cos [§ My, + k Mp + mwp]
M,=nt, Mp=>Ap—wp
m 7, k = Fourier indices, m = spherical harmonic order = 0 or 2



Equilibrium tide models

Constant lag angle versus constant lag time: DARWIN

Potential due to bulge with each tidal component lagged:

®,(rp) m. 3 R \3 |
oty = b () (2) () 5 Comeren) oty 0 ) + £+ mec

= kop (m*) (&) (ﬁ) > Cikm(ep, ep) {cos [j M, + k Mp + m wp]

ap jkm

+ejmsin[j My + k Mp + mwp] + O(e,,)}

Spin of distorted body faster than orbital motion: tidal bulge LEADs line of centres: 0rbit is torqued 13



Equilibrium tide models

Constant lag angle: GOLDREICH

‘- ® Using Lagrange’s planetary equations to write down rates of
change of orbital elements, then putting e,=ep, ay,=ay and
averaging over the orbital period, gives

. R\ .
= ko () (72 oo — e + Jea + 3]
edt my) \ a

and related expressions for semimajor axis and apsidal angle.

Spin of distorted body faster than orbital motion: tidal bulge LEADs line of centres: orbit is torqued 14



Equilibrium tide models

Constant lag angle: GOLDREICH 1963

Using Lagrange's planetary equations to write down rates of
change of orbital elements, then putting e, =ep, ay,=ap, gives

. m, R \° .
o 2t = énkgp ( ) ( p) [eg — /%,1961 + ,1162 + 363]
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Equilibrium tide models

Q-value: Goldreich & Soter |966:

the tidal dissipation function 1/Q defined by

1 dE
b= —— | dt ~ 2
Q ZWE()f( dt) €

where E, Is the maximum energy stored in the tidal distortion and
-dE/dt is the energy lost during one complete cycle.,

Equal lag angles: €y = €] = €9 = €3 —» asingle Q-value

Goldreich’s argument for equal lag angles was based on the fact that
for the Earth, Q varies by less than a factor of four over a range of one cycle
per second to one cycle per year (Goldreich 1963)
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Equilibrium tide models

Q-value: Goldreich & Soter |966:

e ¢

5

1de 3 m.\ (R 19 1 3
eqt ~ 2 Fw (m) (2) lo— e+ ia+e

LT (k) () (R’
16 \3Q,) \my/) \a
.
1/Q'
o = sign(ZQ —_ 3n) = sign of term with largest coeff




Equilibrium tide models

Q-value: Goldreich & Soter |966:

5

a

o = sign(2€2 — 3n)

lde 3 m. R ' ; :
—— = =nky, ( ) (_p) [60 — T+ e+ 36

-63/4 for synchronized spin

= sign of term with largest coeff

18



Equilibrium tide models

‘ HUT 198

(]
tde _ —27n —="q(1 + q) ( .

8
L < ) . f(e,2/n) a=mm

— —27nky(n7) (:;) (IZ”) - f(e,/n)

The Mardling & Lin swindle - IR

Q \my/ \ a

(" “swindle”: a fraudulent scheme or action) 19



Equilibrium tide models
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Equilibrium tide models
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See also Leconte, Chabrier, Baraffe, Levrard 2010...

Here | have taken constant semi=0.03 AU
and synchronous rotation, with

for Goldreich:

Toi _E_E QP (mp) a ’
e e 21 \ky/) \m.) \R,

For Hut and M&L,  Teire
determined numerically
(time when e=¢e(0)/2.718), with

1
Q.]upz'tcr - nlo) : Q.]upitcr

THut = (

n,= 1.8 day, Q=3.6x10



Equilibrium tide models
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Transform theoretical Y to B
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Transform from B to Y




