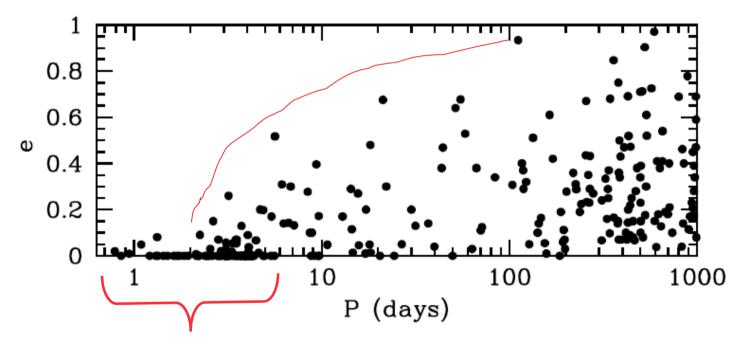
Tidal evolution models for exoplanets

Rosemary Mardling

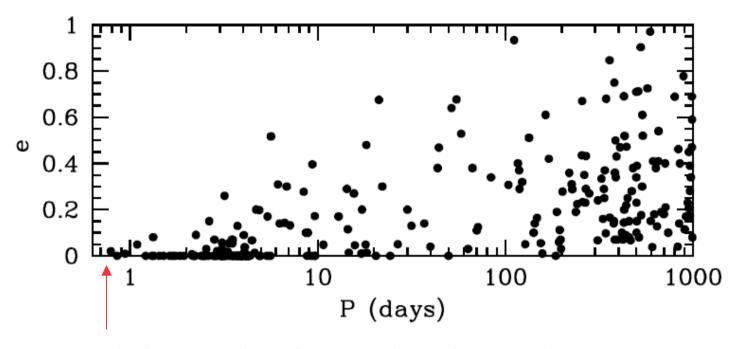
School of Mathematical Sciences Monash University

Eccentricity-period distribution



Evidence for tidal circularization

Eccentricity-period distribution



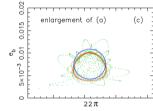
record 0.79 days WASP-19b. WASP-12b - overflowing its Roche lobe?

 $m_p = 1.15 M_J$

- Understanding the efficiency of the tidal dissipation process helps us to constrain aspects of the theory of planet formation and subsequent dynamical evolution
 - timing: did the planet arrive at its present location before or after the PMS?
 what role did the proto-stellar spin play? (Dobbs-Dixen et al 2004)
 - disk migration or something else (Kozai ???)
 - what role did/do the magnetic fields of both the star and planet play?
 - are some planets swallowed by the star?
 - are we seeing ``the last of the Mohecans'' (al la DNC Lin: WASP-12b)
 - how much has the original eccentricity distribution been modified by tides?

- has Kozai forcing by companion (star or planet) + tides played a significant role in shaping period distribtion of short-period planets?
 - at what stage in its orbital evolution is a Kozai-forced system like HD 80606? (e=0.93)
- what role do tides play in planet inflation? (other mechanisms: eg. magnetic fields, stellar insolation)
- for non-circular short-period high-density planets, what can we say about their internal structure?
 - what about water worlds?
 - in between (rocky + oceans)
- how do tides influence the existence or otherwise of moons?

- what can we deduce about the internal structure of short-period planets with companions (one needs a low enough planet Q-value for fixed point to be reached)
 - do planets form with or without cores?
 - some do and some don't ?



- The HAT-P-13 system the Rossetta stone for internal structure ? (G. Laughlin)
 - not if it is significantly inclined (probably it is not...)
- can we use the same theory to guide our search for low-mass companion planets?
 - why does GJ 436 (a Neptune-sized object) have such a large eccentricity?
 - •Does it simply have a large Q-value? (a=0.029 AU, e=0.15, a/ R_p =160)
 - Or does it have a low-mass companion hiding under an inclined rock?

- how do known exoplanets differ from Solar System planets of similar mass?
- are there Mercury analogues (eg 3:2 spin-orbit resonance) most surely there are!
- is there evidence for tides ``breaking" mean-motion resonances between more distant companions?
- what can we deduce about the structure and damping efficiency of host stars?
 - Is this consistent with what we know about binary pairs?

<u>Equilibrium tide:</u> assumes hydrostatic equilibrium (only really true for circular, synchronous spin-aligned systems but reasonable for modest eccentricities)

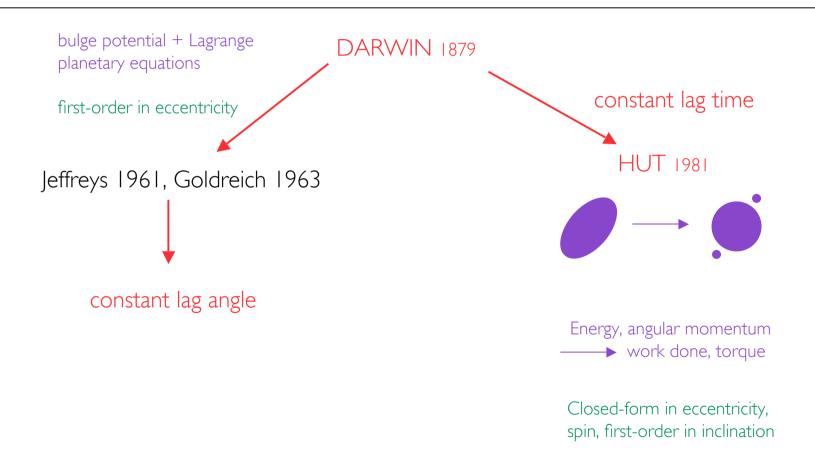
In the beginning...

Phil. Trans. Roy. Soc. Lon.

XX. On the Secular Changes in the Elements of the Orbit of a Satellite revolving about a Tidally distorted Planet.

By G. H. DARWIN, F.R.S.

Received December 8,—Read December 18, 1879.



ALEXANDER 1973

EGGLETON (et al) 1998

fluid-dynamical description

Fluid shear in rotating frame ≡ constant lag time

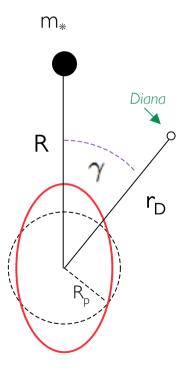
Closed-form in eccentricity, spin, AND inclination

Constant lag angle versus constant lag time...

these days: Goldreich vs Hut / Eggleton.

And then there's that hybrid model many people use...

Constant lag angle versus constant lag time: DARWIN



Potential due to bulge:

Diana
$$\Phi_p(\mathbf{r}_D) = k_{2p} \left(\frac{m_*}{m_p}\right) \left(\frac{R_p}{R}\right)^3 \left(\frac{R_p}{r_D}\right)^3 P_2(\cos\gamma)$$

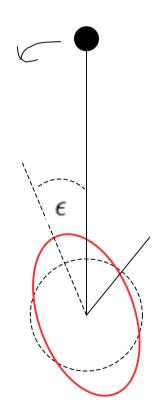
$$= k_{2p} \left(rac{m_*}{m_p}
ight) \left(rac{R_p}{a_p}
ight)^3 \left(rac{R_p}{a_{\mathcal{D}}}
ight)^3 \sum_{jkm} \mathcal{C}_{jkm}(e_p, e_{\mathcal{D}}) \cos \left[j \, M_p + k \, M_{\mathcal{D}} + m \, arpi_{\mathcal{D}}
ight]$$

$$M_p = n t, \quad M_{\mathcal{D}} = \lambda_{\mathcal{D}} - \varpi_{\mathcal{D}}$$

$$m_p$$

j, k = Fourier indices, m = spherical harmonic order = 0 or 2

Constant lag angle versus constant lag time: DARWIN

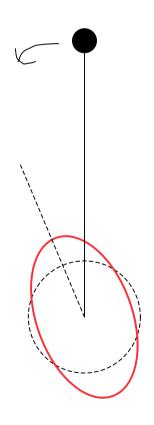


Potential due to bulge with each tidal component lagged:

$$\frac{\Phi_p(\mathbf{r}_{\mathcal{D}})}{Gm_p/R_p} = k_{2p} \left(\frac{m_*}{m_p}\right) \left(\frac{R_p}{a_p}\right)^3 \left(\frac{R_p}{a_{\mathcal{D}}}\right)^3 \sum_{jkm} C_{jkm}(e_p, e_{\mathcal{D}}) \cos\left[j\left(M_p + \epsilon_{jm}\right) + k M_{\mathcal{D}} + m \varpi_{\mathcal{D}}\right]$$

$$= k_{2p} \left(\frac{m_*}{m_p}\right) \left(\frac{R_p}{a_p}\right)^3 \left(\frac{R_p}{a_D}\right)^3 \sum_{jkm} \mathcal{C}_{jkm}(e_p, e_D) \left\{\cos\left[j M_p + k M_D + m \varpi_D\right] + \epsilon_{jm} \sin\left[j M_p + k M_D + m \varpi_D\right] + \mathcal{O}(\epsilon_{jm}^2)\right\}$$

Constant lag angle: GOLDREICH

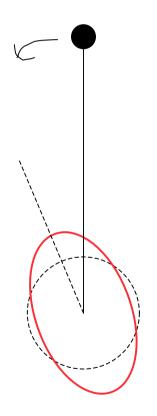


Using Lagrange's planetary equations to write down rates of change of orbital elements, then putting $e_M = e_D$, $a_M = a_D$ and averaging over the orbital period, gives

$$rac{1}{e}rac{de}{dt}=rac{3}{2}n\,k_{2p}\left(rac{m_*}{m_p}
ight)\left(rac{R_p}{a}
ight)^5\left[\epsilon_0-rac{49}{4}\epsilon_1+rac{1}{4}\epsilon_2+rac{3}{2}\epsilon_3
ight]$$

and related expressions for semimajor axis and apsidal angle.

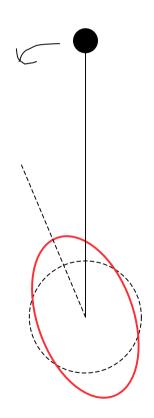
Constant lag angle: GOLDREICH 1963



Using Lagrange's planetary equations to write down rates of change of orbital elements, then putting $e_M = e_D$, $a_M = a_D$, gives

$$\frac{1}{e}\frac{de}{dt} = \frac{3}{2}n\,k_{2p}\left(\frac{m_*}{m_p}\right)\left(\frac{R_p}{a}\right)^5\left[\epsilon_0 - \frac{49}{4}\epsilon_1 + \frac{1}{4}\epsilon_2 + \frac{3}{2}\epsilon_3\right]$$
 lag angles

Q-value: Goldreich & Soter 1966:



the tidal dissipation function I/Q defined by

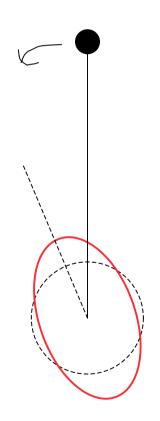
$$Q^{-1}=rac{1}{2\pi E_0}\oint\left(-rac{dE}{dt}
ight)dt\simeq 2\epsilon$$

where E_0 is the maximum energy stored in the tidal distortion and -dE/dt is the energy lost during one complete cycle.

Equal lag angles:
$$\epsilon_0 = \epsilon_1 = \epsilon_2 = \epsilon_3$$
 a single Q-value

Goldreich's argument for equal lag angles was based on the fact that for the Earth, Q varies by less than a factor of four over a range of one cycle per second to one cycle per year (Goldreich 1963)

Q-value: Goldreich & Soter 1966:



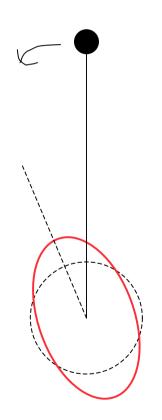
$$\frac{1}{e}\frac{de}{dt} = \frac{3}{2}n \, k_{2p} \left(\frac{m_*}{m_p}\right) \left(\frac{R_p}{a}\right)^5 \left[\epsilon_0 - \frac{49}{4}\epsilon_1 + \frac{1}{4}\epsilon_2 + \frac{3}{2}\epsilon_3\right]$$

$$= \frac{171}{16} n \left(\frac{2}{3} \frac{k_{2p}}{Q_p}\right) \left(\frac{m_*}{m_p}\right) \left(\frac{R_p}{a}\right)^5 \sigma$$

$$1/Q'$$

$$\sigma = \operatorname{sign}(2\Omega - 3n)$$
 = sign of term with largest coeff

Q-value: Goldreich & Soter 1966:



$$\frac{1}{e}\frac{de}{dt} = \frac{3}{2}n \, k_{2p} \left(\frac{m_*}{m_p}\right) \left(\frac{R_p}{a}\right)^5 \left[\epsilon_0 - \frac{49}{4}\epsilon_1 + \frac{1}{4}\epsilon_2 + \frac{3}{2}\epsilon_3\right]$$

$$= \underbrace{\frac{171}{16}n\left(\frac{2}{3}\frac{k_{2p}}{Q_p}\right)\left(\frac{m_*}{m_p}\right)\left(\frac{R_p}{a}\right)^5}_{1/O'} \sigma$$

$$\sigma = \mathrm{sign}(2\Omega - 3n)$$
 = sign of term with largest coeff

-63/4 for synchronized spin

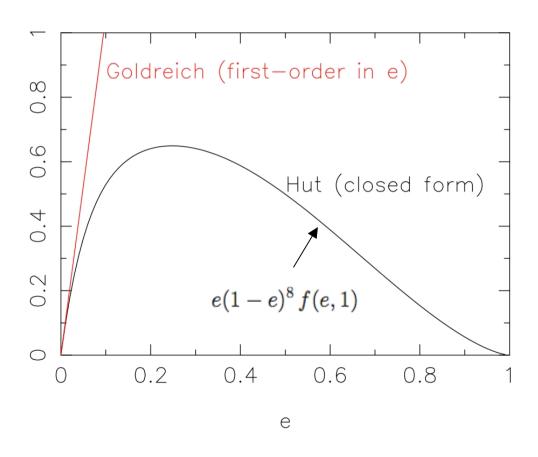
HUT 1981

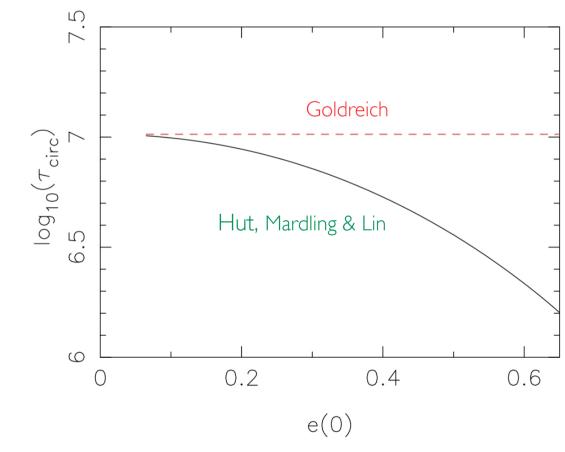
$$rac{1}{e}rac{de}{dt} = -27\,n\,rac{k_{2p}}{T}q(1+q)\left(rac{R_p}{a}
ight)^8\cdot f(e,\Omega/n)$$
 q=m₂/m₁

$$= -27 n k_{2p}(n au) \left(\frac{m_*}{m_p}\right) \left(\frac{R_p}{a}\right)^5 \cdot f(e,\Omega/n)$$

The Mardling & Lin swindle

$$= -27 n \frac{k_{2p}}{Q} \left(\frac{m_*}{m_p} \right) \left(\frac{R_p}{a} \right)^5 \cdot f(e, \Omega/n)$$





See also Leconte, Chabrier, Baraffe, Levrard 2010...

Here I have taken constant semi=0.03 AU and synchronous rotation, with

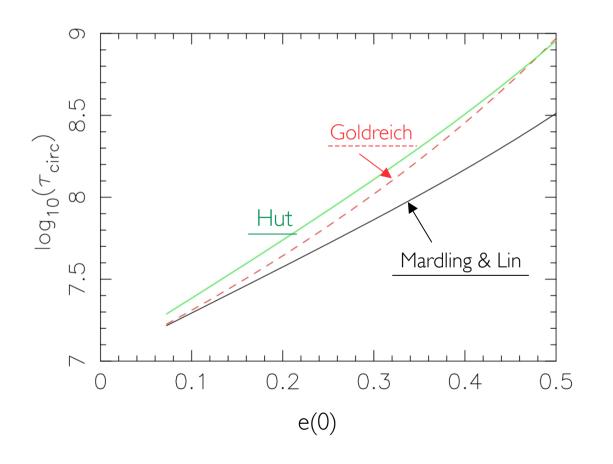
for Goldreich:

$$au_{circ} = rac{e}{\dot{e}} = rac{2}{21} \left(rac{Q_p}{k_{2p}}
ight) \left(rac{m_p}{m_*}
ight) \left(rac{a}{R_p}
ight)^5$$

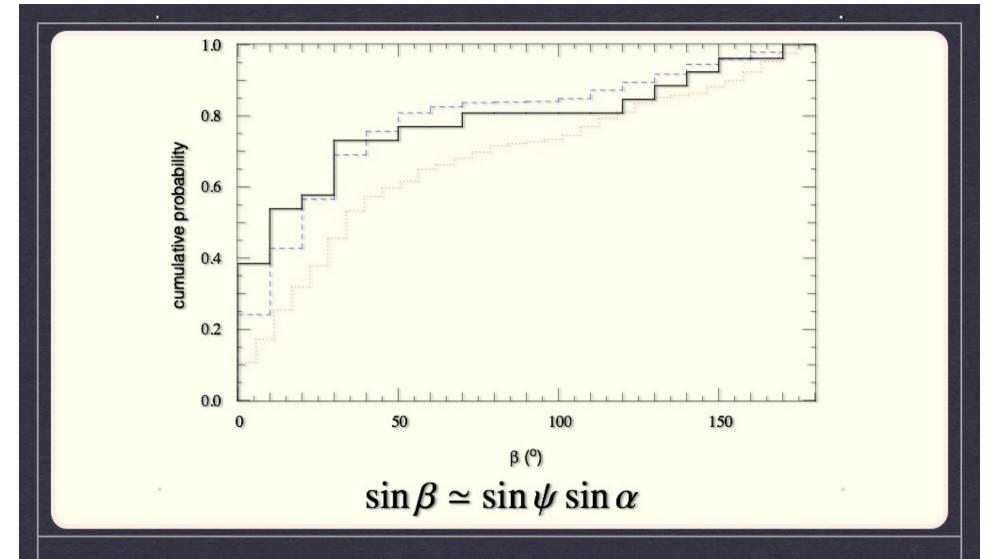
For Hut and M&L, τ_{circ} determined numerically (time when e=e(0)/2.718), with

$$au_{Hut} = rac{1}{\left(\Omega_{Jupiter} - n_{Io}\right) \cdot Q_{Jupiter}}$$

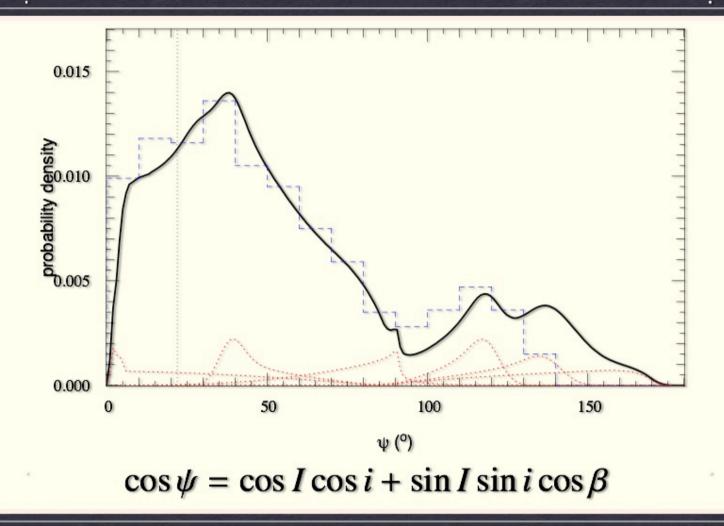
$$n_{lo} = 1.8 \text{ day}, Q_{l} = 3.6 \times 10^{4}$$



constant peri - 0.03 AU



Transform theoretical ψ to β



Transform from β to ψ