Dynamical tidal interactions of giant planets and stars

Gordon Ogilvie DAMTP, University of Cambridge

Exoplanets Rising

KITP 02.04.10






Tidal forcing

e Tidal potential experienced by body 1
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Fourier analysis
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Love number and “tidal Q”

e Consider each potential component experienced by body 1
~ r : :
U = \Ijl,m (_> Yl,m(ea ¢) e_Mt

e Body 1 is deformed and generates an external potential

N GR |
D' = k(W) ¥im (R_1> Y m(0,0)e

( + orthogonal terms )

e Love number (linear response function)
o Energy transfer to orbit o< wIm (ki) [V m|?

e Angular momentum transfer oc m Im(k; ) [V |

k 1
o Im(k) ~ @ o < 1 dependson w,l,m (usually | = m = 2)




Analogy : forced harmonic oscillator
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Tidal forcing problem

Viscous uniformly rotating fluid
Tidal potential ¥ and linear response proportional to e
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Tidal forcing problem

Energy dissipation rate
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Energy input rate
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Tidal torque
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Complications:
differential rotation, thermal diffusion, convection,

magnetic fields, nonlinearity, ...




From Goldreich (1963)

Q will in general vary with the
frequency and amplitude of the tide and the size of the sphere in addition to its

composition.

// o

While this constant
behaviour of O with frequency may not be true for all planets (especially not the
major ones)

//

In our discussions we shall use the language of
linear tidal theory, but we must keep in mind that our numbers are really only
parametric fits to a non-linear problem.




Nonlinearity of tides in fluid bodies

e Equilibrium tidal amplitude
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e Nonlinear breakdown through secondary instabilities when
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Tidal Q of solar-type stars and giant planets

No simple answer!

® Q (or k. (w)) is aresponse function, not a simple number
e Fluid dynamical calculations are still explorator o

Y PIoratony DAMGER
e Planetary interior models are uncertain

g‘
Zahn'’s categorization : g
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e “Equilibrium tide”

Dissipation associated with large-scale tidal bulge

e “Dynamical tide”

Dissipation associated with low-frequency waves



Tidal Q of solar-type stars and giant planets

“Equilibrium tide”

e solid regions (viscoelastic, etc.)

e convective regions (turbulent “viscosity”)

e other physics (phase transitions, helium separation)

e nonlinear breakdown (elliptical instability, etc.)

“Dynamical tide”
¢ inertial waves in convective regions

¢ inertia-gravity waves in radiative regions

g
“inertial wave” : Coriolis force

“gravity wave” : buoyancy force
~ J




Inertial waves in convective regions

Solar-type star

[Irradiated] giant planet

[Savonije & Witte 2002]
Ogilvie & Lin 2007

Ogilvie & Lin 2004

Wu 2005

Papaloizou & lvanov 2005

lvanov & Papaloizou 2007

Goodman & Lackner 2009
Ogilvie 2009

Rieutord & Valdettaro 2010



Inertial wave frequency range

For a uniformly rotating body, —2Q) < w < 2Q
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Inertial waves : modes or beams?

Dense or continuous spectrum, —20 < o < 21}

e Tidal forcing excites normal modes (Wu; Papaloizou & lvanov)

e Tidal forcing excites narrow beams (Ogilvie & Lin; Goodman &
Lackner; Rieutord & Valdettaro)




Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry

¢ Rigid core, fractional radius 0.0
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Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.1
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Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.2
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Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.3
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Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.4
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Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.5

log,,(dissipation /w?)




Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.6

log,,(dissipation /w?)




Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.7

log,,(dissipation /w?)




Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.8
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Responses of spheres and shells

|dealized problem : isentropic rotating fluid in spherical geometry
¢ Rigid core, fractional radius 0.9

log,,(dissipation /w?)




Dependence on core size
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Dependence on core size

= fifth power of core size
(cf. Goodman & Lackner)

= from overlap with
- (quasi) normal modes
| (cf. Wu; Pap. & Ivanov)
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Rigid versus fluid core

|dealized problem : isentropic rotating fluid in spherical geometry
e Rigid core

log,,(dissipation /w?)




Rigid versus fluid core

|dealized problem : isentropic rotating fluid in spherical geometry
e Fluid core, density jump by factor 2
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Responses of spheres and shells

e Full spheres with smooth density profiles support normal modes

e Some tidal overlap with normal modes occurs, leading to resonant
peaks in the response, if the density is nhon-uniform

e Presence of a core and/or density jumps enhances tidal response
but concepts of normal modes and resonance are less relevant

e Enhanced dissipation for tidal frequencies (in rotating frame)
—20) < w < 20) relevant for synchronization and circularization

e Frequency-averaged Q strongly dependent on internal stucture
but not on viscosity; for intermediate core sizes,

<5>w% <f%>5 (Q?yny

e Strong frequency dependence in cases of low viscosity




Inertial waves in a solar-type star

Ogilvie & Lin (2007)
e solar model, but spin period 10 days

e dissipation in convective zone only
Goldreich & Nicholson vuscosnty

—12¢




Inertial waves in a solar-type star

Ogilvie & Lin (2007)
e solar model, but spin period 10 days

e dissipation in convective zone only
Penev et al. vuscosuty (?)

tidal periooE :




Inertial waves in convective regions

Complications:

e convection (dissipation, scattering)

e magnetic fields (regular and irregular)
e imperfect reflections

¢ nonlinearity

All difficult to model accurately and may wash out some of the
frequency-dependence of Q

Needed from planetary structure:
e density profile
e density / entropy jumps

e size and rigidity of core




Inertia-gravity waves in radiative regions

Solar-type star

Goodman & Dickson 1998
Terqguem et al. 1998
Savonije & Witte 2002
Ogilvie & Lin 2007

Barker & Ogilvie 2010

Irradiated giant planet

[loannou & Lindzen 1993]
Lubow et al. 1997
Ogilvie & Lin 2004

[Gu & Ogilvie 2009]
[Arras & Socrates 2010]




Inertia-gravity waves: resonant modes or breaking waves?




Inertia-gravity waves in radiative regions

Savonije & Witte 2002

e linear tidal response of 1-solar mass star
e realistic stellar model and evolution

e Coriolis force (traditional approximation)
e radiative diffusion

e turbulent viscosity [large?]




Inertia-gravity waves in radiative regions (star)

Savonije & Witte 2002 (cf. Terguem et al. 1998)

e resonant excitation of normal modes
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Inertia-gravity waves in radiative regions (star)

Ogilvie & Lin 2007 (cf. Goodman & Dickson 1998)

e assumes waves do not reflect from stellar centre

-12
-20

tidal frequency




Inertia-gravity waves in radiative regions (star)

Barker & Ogilvie 2010

: linear wave profile |
e waves break at centre if 2 very near centre -

My g5 Lo o
MJ . day

or more easily in older or
slightly more massive stars

Porb 8/3
day

e if this occurs, then Q' ~ 1.5 x 10° (

. - M\ "' P\
and planet is devoured within 2.3 Myr | ——
MJ day

For smaller forcing amplitudes, resonant locking (Savonije & Witte)
may need to be reexamined allowing for wave breaking




Inertia-gravity waves in radiative regions (planet)

Lubow et al. 1997

e rough application of Zahn / Goldreich-Nicholson approach
to hot Jupiters

1 b (H>2/3< W >8/3
— X — | —
Qg) 15 Rp Wdyn

6 { Piae\™?
< day )
Issues still needing to be addressed
(atmospheric dynamics simulations?) :
e role of Coriolis force and winds
e suppression of wave generation in thin atmosphere

e wave reflection and nonlinearity

e spin evolution of atmosphere




Summary

Equilibrium tides
e possibly interesting contribution in stars with convective envelopes

e maybe relevant for giant planets with nonlinearity or exotic physics

Inertial waves in convective regions
e enhanced dissipation for —2€) < w < 2()
e strong dependence on internal structure and (probably) frequency

e application to stars less clear because of vigorous convection

Inertia-gravity waves in radiative regions

e typical dependence 1/Q’ « w®? but suppressed in HJ atmosphere
at high frequencies




Conclusions

e Tidal evolution probably determines the fate of short-period
extrasolar planets

e Linear theory of idealized models predicts an intricate
frequency-dependence of Q’, which may be modified in reality

e Nonlinear aspects (wave breaking, mode coupling, etc.) can be
important even for “weak” tides. Extrasolar planets may be
In a different regime from solar-system planets

e Better models of planetary (and stellar) interiors are needed
and more understanding of the interaction of tides with
convection, magnetic fields, etc.

e Thermal and magnetic tides also require further investigation

e Extrasolar systems are diverse and can reveal much when
examined on an individual basis




