Secular Evolution of Multiple Planet Systems \& Implications for the Planet Scattering Model

Eric B. Ford (University of Florida)

KITP program on Theory \& Observation of Exoplanets April 20, 2010

Secular Evolution of Multiple Planet Systems \& Implications for the Planet Scattering Model

Many collaborators: Aaron Boley, Mark Booth, Sourav Chatterjee, Eugene Chiang, Ruth Murray-Clay, Knicole Colon, Justin Crepp, Sarah Dodson-Robinson, Pengcheng Gou, Thomas Hettinger, Kaitlin Krater, Lance Legel, Verene Lystad, Soko Matsumura, Althea Moorhead, Benjamin Nelson, Margaret Pan, Matthew Payne, Sam Quinn, Fred Rasio, Richard Ruth, Dimitri Veras, Ji Wang, Mark Wyatt, Andrew

Youdin, Nadia Zakamska

California Planet Survey: Debra Fischer, Andrew Howard, John Johnson, Geoff Marcy, Josh Winn, Jason Wright,

Secular Evolution of Multiple Planet Systems \& Implications for the Planet Scattering Model

Particularly relevant papers:
"Secular Orbital Dynamics of Hierarchical Two Planet Systems" Veras \& Ford 2010 accepted to ApJ; arXiv:1004.1421)
"Secular Evolution of HD 12661: A System Caught at an Unlikely Time" Veras \& Ford 2009 ApJ 690, L1
"Apsidal Behavior among Planetary Orbits: Testing the Planet Scattering Model"
Barnes \& Greenberg 2007 ApJ 659, L53
"Extrasolar Planetary Systems Near a Secular Separatrix"
Barnes \& Greenberg 2006 ApJ 638, 478 III
"Planet-planet scattering in the upsilon A diromertaie-system"
Ford et al: 2005 Nature 434,873 .

Eccentricities of Exoplanets

Planet-Planet Scattering Model

- Assumptions for individual eccentric systems:
- Multiple massive planets formed around star
- System formed with "dynamically active" planet masses and separations (e.g., Chatterjee et al. 2008; Juric \& Tremaine 2008)
- At least one planet capable of ejecting other bodies: $\mathrm{V}_{\text {esc,pl}} / \mathrm{v}_{\text {esc,star }}>1$ (e.g., Ford \& Rasio 2008, Raymond et al. 2009)
- Last planet scattering event occurs once gas disk has begun to dissipate (e.g., Matsumura et al. 2010)

Planet-Planet Scattering Model

- Predictions for individual eccentric systems: (robust, many authors)
- The most massive planet remains bound
- Semi-major axis distribution depends on initial conditions
- Eccentricity distribution is relatively insensitive to ICs
- Inclinations are typically excited (but loose correlation w/e)
- Various correlations (often depend on detailed assumptions)
- Prediction if initially exactly 2 circular planets:
(Ford \& Rasio 2008)
- Only massive planet in the system today
- Eccentricity distribution is only sensitive to planet mass ratio
- Maximum eccentricity of 0.8 ($\sim 358 / 362,210 / 214 \mathrm{w} / \mathrm{e}>0.1)$

Eccentricity Distribution

Planets that Scatter Efficiently

What Determines Final Orbits?

Illustration by E. Chiang

What Determines Final Orbits?

Late Stages of Planet Formation

Late Stages of Planet Formation

Levison \&
Morbidelli 2007 Ford \& Chiang 2007 Goldreich et al 2004
Kenyon \& Bromley 06
Thommes et al. 99, 02

Multiple Planet Systems

GJ 876 55 Cnc GJ 581 HD 187123 HD 40307 HD 47186
v And HIP 14810 HD 217107 HD 69830 HD 181433 HD 191760
μ Ara HD 190360 HD 38529 HD 11964 HD 74156 HD 168443 HD 37124 HD 102272 HD 155358 HD 73526 HD 45364 HD 82943 HD 60532 HD 169830 HD 202206 HD 12661 HD 108874 HD 128311 HD 183263

47 UMa

Architecture of Multi-Planet Systems

- Multiple Planet Systems: ~41
- Hierarchical (No Significant Interactions, assuming low-inclination)
- Secular Evolution (Insignificant short-term interactions)
- History of eccentricity \& inclination excitation
- If one is tidal evolving, can probe planet structure
- Mean Motion Resonances (short \& long-term interactions)
- Evidence for convergent migration
- Relative frequency of different MMRs can probe:
- Migration rates
- Eccentricity at time of migration
- Significance of turbulence
- Relative importance of migration via gas disk versus planetessimal disk

Modes of Secular Evolution

Circulation vs Libration

time $=0$.

v Andromedae

- First multiple planet system discovered around main sequence ($\mathrm{F} 8 \mathrm{~V}, 1.3 \mathrm{M}_{\text {狄 }}$, 3 Gyr) star in 1999.
- Hundreds of radial velocity observations
- v And c \& d have significant eccentricities ($\sim 0.26 \& 0.28 \pm 0.02$)
- Significant secular eccentricity evolution
- What is the origin of these eccentricities?

Secular Evolution of Upsilon Andromedae

Ford, Lystad, Rasio 2005

Impulsive Formation Scenario

$$
\begin{gathered}
\text { Initial: } \\
\mathrm{P}_{\mathrm{d}}=5.8 \mathrm{yr} \\
\mathrm{~m}_{\mathrm{d}}=3.8 \mathrm{M}_{\text {Jup }} \\
\mathrm{e}_{\mathrm{d}}=0.003 \\
\mathrm{P}_{\mathrm{e}}=8.7 \mathrm{yr} \\
\mathrm{~m}_{\mathrm{e}}=1.9 \mathrm{M}_{\text {Jup }} \\
\mathrm{e}_{\mathrm{e}}=0.004 \\
\\
\text { Final: } \\
\mathrm{P}_{\mathrm{d}}=3.7 \mathrm{yr} \\
\mathrm{e}_{\mathrm{d}}=0.29
\end{gathered}
$$

Malhotra 2002
Ford, Lystad, Rasio 2005

Conclusions for v And $c \& d$

- Very near boundary of libration \& circulation
- If librating, large amplitude
- v And c periodically returns to $e_{c} \sim 0.01$
- Implies v And c \& d initially on circular orbits when v And d received impulsive perturbation
- Secular evolution transfer eccentricity to v And c
- Impulsive perturbation naturally provided by Planet-Planet scattering of $\sim 1.9 \mathrm{M}_{\text {Jup }}$ planet
- Multiple planet systems can provide valuable information about history of planet formation

Secular Evolution of HD 12661

- Planet c nearly circular now, but periodically acquires large eccentricity
- Planet b typically has smaller eccentricity (but does not return to circular orbit)

Secular Evolution of HD 12661

 Depends on Relative Inclination| Relative
 Inclination
 (degrees) | Libration
 About 0
 degrees | Libration
 About I 80
 degrees | Stable | Isotropic |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0% | 100% | 100% | No data |
| $0-30$ | 8.3% | 91.8% | 99.3% | 6.7% |
| $30-60$ | 35.6% | 64.4% | 92.9% | 18.3% |
| $60-90$ | 47.0% | 53.0% | 66.8% | 25.0% |
| $90-120$ | No data | No data | 0.2% | 25.0% |
| $120-150$ | 49.1% | 50.9% | 22.8% | 18.3% |
| $150-180$ | 59.5% | 40.5% | 94.8% | 6.7% |
| Isotropic | 40.8% | 59.2% | 55.9% | No data |
| Prograde | 25.8% | 64.2% | 80.7% | No data |

Secular Evolution of HD 12661

- Planet c nearly circular now, but periodically acquires large eccentricity
- Planet b typically has smaller eccentricity (but does not return to circular orbit)

Secular Evolution of HD 155358

Inner Planet

Time (yr)

Outer Planet

- Best-Fit orbital solution lies near boundary of secular apsidal evolution
- Like Ups And \& HD 12661?
- Perhaps too many systems like this? (Barnes \& Greenberg 2006, 2007)

Secular Evolution of HD 155358

- Best-Fit orbital solution lies near boundary of secular apsidal evolution
- Like Ups And \& HD 12661?
- Maybe, Maybe not
- Current orbit not known well enough

Stability \& Secular Evolution depend on Relative Inclinations

Veras \& Ford 2010

Is "Near-Sepratrix" behavior

 nnmmn?

Veras \& Ford 2010

Secular Orbital Evolution

- Secular evolution uniquely determined for few very-well observed systems
- Upsilon And \& HD 12661 show evidence for impulsive excitation
- More often measurement errors \& unknown masses/inclinations leave ambiguities in secular evolution

Upsilon Andromedae c \& d

Ford, Lystad, Rasio 2005

HD 12661 b \& c

Eccentricity
Veras \& Ford 2008

HD 155358 b \& c

Veras \& Ford 2010

Future Observational Tests

- Orbital Evolution of Multiple Planet Systems: (working to obtain many more high-precision RVs; SIM?)
- Architecture of Planetary Systems
-Period, Mass, Eccentricity Correlations: now RV searches, soon Kepler, eventually SIM
-Eccentricity \& Inclination Evolution: Rossiter effect for transiting planets; planet-scattering predicts distribution
- Frequency of Resonant Planets:
- Now: RV searches
- Soon: space-based transit searches?
- Transit timing variations observations gaining sensitivity

