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GENERAL TIDAL PROBLEM
Two bodies in (nearly) Keplerian orbit

Deformation from spherical shape causes
departure from Keplerian motion :

● precession (non-dissipative)

● spin-orbit evolution (dissipative)

Two important regimes :

● tidal encounter (hyperbolic / highly eccentric)

● periodic tide (small eccentricity / short period)
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TIDAL COMPONENTS
Quadrupolar tide, to lowest order in e and i :
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Q-PARAMETRIZATION
Energy dissipation rate :
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Tidal torque :

Q′ = Q (quality factor) for a homogeneous fluid body

Q′ = Q′(ω̂, m)
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TIDAL RESPONSE
Basic response (equilibrium tidal bulge) :

Dynamical tide :

● additional (wavelike) response

● modified in solid regions (rigidity)

● modified in convective regions

● spheroidal displacement, 

● not exact solution because ω̂ != 0

● low-frequency internal waves :

● inertial waves (convective regions)

● inertia-gravity waves (radiative regions)

ξr = −(Ψ + Φ′)/g, ∇ · ξ = 0



DISSIPATION MECHANISMS
Equilibrium tide :

● solid regions (viscoelastic, etc.)

● convective regions (turbulent “viscosity”)

● nonlinear breakdown, e.g. elliptical instability

Dynamical tide :

● other physics (e.g. helium)

● inertia-gravity waves in radiative regions
(resonances, radiative damping, wave breaking)

● inertial waves in convective regions
(attractors, critical latitudes, resonances)
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e.g. le Bars et al. 2010

Zahn, Goldreich, Savonije, Papaloizou, Goodman, Terquem, Lubow, Witte, Barker, Ogilvie
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FREQUENCY DEPENDENCE
Equilibrium tide :

● probably smooth dependence

Dynamical tide :

● frequency ranges for different wave types

● resonant peaks (coherent linear modes)

● smooth dependence (damped waves)

● complicated (attractors, etc.)



INFORMATION NEEDED
Planetary structure :

● extent and properties of  dense cores

● properties of  convective regions

● interface to radiative layers

Stellar structure :

● density jumps, phase transitions, thermodynamics

● properties of  convective regions

● stratification near centre (solar-type)



STELLAR MODELS
e.g. Sun, current age :

Christensen-
Dalsgaard

Bahcall (Eggleton)



SOME RECENT ADVANCES



CONVECTIVE VISCOSITY
Penev et al. 2009
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CONVECTIVE VISCOSITY
Application to solar CZ (but with 10-day spin period)

Goldreich & Nicholson viscosity Penev et al. viscosity (?)

tidal period   1 day     ½ day tidal period   1 day     ½ day
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BREAKING GRAVITY WAVES
Barker & Ogilvie (2010)
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Waves overturn and break if
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...or more easily in older or more massive stars
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and the planet is swallowed within

BREAKING GRAVITY WAVES



INERTIAL WAVES
Ogilvie & Lin (2004, 2007), Wu (2005),

Rieutord & Valdettaro (2010)
Goodman & Lackner (2009), Ogilvie (2009),



deep ocean

rigid core

FORCED INERTIAL WAVES
Simplified problem :

ur = 0

ur ∝ Y 2

2 (θ, φ) e−iωt

uniformly rotating - neglect centrifugal distortion

(homogeneous 
incompressible 
fluid)



DISSIPATION RATE : 50% CORE
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wave attractors



DEPENDENCE ON CORE SIZE

● frequency-averaged dissipation ∝ α5

(Goodman & Lackner 2009, Ogilvie 2009)
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giant planet,   
20% core

Ek = 10-7, 10-8

cf. GIO & LIN (2004)



INERTIAL WAVES IN SATURN
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STELLAR APPLICATION
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CONCLUSIONS

● Q’ is not a constant for stars or giant planets

● Linear waves give an intricate frequency

● Cleanly launched and fully damped waves

dependence of  Q’, still only partly understood

● Extrasolar systems need to be examined on an
individual basis owing to structural differences

● Linear and nonlinear fluid mechanisms
require much further study

give a robust, smooth frequency dependence

● Better interior models and physics are needed


