The Influence of the Cluster Environment on Star-Disc Systems

S.Pfalzner

23rd February 2010

Kavli Institute of Theoretical Physics

Star formation happens in very different environments

Arches

Star and Planet formation

Planets and their hosts:

- stars form with dusty discs
 - → protoplanetary discs
- protoplanetary discs serve as hosts of planet formation
- protoplanetary discs last for ~10 Myr

Stars and their hosts:

- more than 80% of all stars form in clusters (Lada et al., 2003)
- more than 50% of all stars form in massive clusters (N > 1000)
- star clusters last for ≥10 Myr

→ Question: To what degree is planet formation affected by cluster?

The ONC as model cluster

The Orion Nebula Cluster (ONC) is

- One of the best observed
 star forming regions
 many of the physical parameters
 are well known
- One of the densest star forming regions in the Galaxy high probability of encounters
- A typical star forming region

Results probably applicable to other star forming

Numerical Method

Number of stars: N ≥ 4000

Density profile: $\sim r^{-2}$

Only coplanare, prograde encounters

Dynamical model of the ONC

Stars only

Code: NBODY6++

List of encounter informations of all different encounter situations stars (Encounter partners, orbits)

Parameter study of star-disc en Code: hierarchical tree code Encounter-effect in a disc for

How does the gravitational interaction influence the star-disc system?

Signs for gravitational interactions

Spiral arms: gravitational interaction but as well planets in disc, binaries etc.

Lower disc frequency in cluster center: but as well by photoevaporation

High velocity stars

What influence do encounters have on the discs of ejected stars?

→ Combine disc signatures and cluster velocity distribution.

Proper motions: Jones & Walker (1988)

Disc signature (IR-excess): Hillenbrand et al. (1998)

Disc destruction by encounters

Olczak, Pfalzner, Spurzem ApJ 642, 1140 (2006),

after 1-2 Myr:

- \sim 5% in the entire ONC (R = 2.5 pc)
- ~ 20-25% in Trapezium region
 Encounters are not a dominant
 disc destruction mechanism for
 solar-type stars

However, the mass distribution in the disc changes considerably.

Probably influences considerably type of formed planetary system

Massive stars: Disc destruction by encounters

Massive stars act as gravitational foci

They loose their disc

much faster and

to a higher degree
than low-mass stars

Planets around massive stars are quite unlikely.

Possible: lower probability for planets around low-mass stars

Angular momentum loss in star-disc encounter

Interaction region for angular momentum loss larger than for mass

Long-standing problem:
Disc angular momentum far too big
to be absorbed in star

Can encounters reduce angular momentum in disc?

My answer: Yes, but by far not enough!

3-5% in entire cluster 15-20% in Trapezium

Angular momentum loss

At least 3-5% angular momentum loss throughout entire cluster

What does a 3-5% angular momentum loss mean?

Different encounter parameters but 3-5% specific angular momentum loss

Pfalzner & Olczak, A&A (2007)

Gravitational instability scenario:

3-5% angular momentum loss might be necessary prerequisite

for formation of giant planets

Cluster dynamics

Simulating a starcluster using nbody6

Young cluster densities

The mass density of young clusters spans 7 orders of magnitude:

From ~0.01 to 10⁵ M_{sun} pc⁻³

General assumption: Stars and planet formation occur in clusters over this entire density range.

Clusters evolve in 2 well-defined tracks in the density-radius plane

Star burst clusters $\rho_c \sim R_c^{-3}$ Diffusion

Leaky clusters $\rho_c \sim R_c^{-4}$ Diffusion + Ejection

Younger still embedded clusters

These young clusters form a kind of side arm

Reasons:

Stars are still in the process of being formed

ONC seems to be a prototype of a embedded leaky cluster

Density-dependence of disc fraction

Density-scaled ONC-models: 1k, 2k, 4k, 8k, 16k particles.

Comparison for Trapezium Cluster (R = 0.3 pc):

Disc fraction decreases with higher density

simulation time [Myr]

- "critical density" of ONC:
- 2-4 times denser system shows prominent effects

Does interaction character change with higher density?

Comparison of low-mass star dynamics with 1000, 4000, and 16000 particles

- → low-mass stars become dominant interaction partners
- → low-mass stars interact via (strongly) hyperbolic encounters

⇒ low-mass stars interact via chance encounters (no focusing!)

In what type of cluster has the solar system developed?

Indications that Solar System developed in cluster environment:

- 60 Fe isotopes as indicator of near (>0.2pc) supernova explosion
 Massive star with ~25 solar masses
 Cluster environment
- 30 AU drop in mass distribution
- High eccentricities of Sedna etc.

However, circular orbits of planets

⇒ no encounter after solar system fully formed

In what type of cluster has the solar system developed?

Portegies-Zwart(2009), Adams (2010)

⇒ cluster with 1000 – 10 000 stars ⇒ leaky cluster

$$\rho_c \sim C t^{-2+/-0.2}$$

No interactions when solar system is formed follows naturally

Challenge for the future:

Could planetary systems form as well in starburst clusters?

There are some discs observed in Arches ...

Cluster environment influences star-disc systems in the ONC in several ways:

- Encounters are not dominant disc destruction mechanism
- Disc destruction mainly for most massive stars
 ➡ Planets around high-mass star unlikely
- Spiral arms could be strong enough to trigger giant planet formation throughout cluster
- Most likely cluster environment for solar system:
 ⇒ Leaky cluster