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Simulating young planetary 
systems: Different approaches

 Full 2d/3d hydrodynamic simulations: e.g. 
Artymowicz, Bryden, Edgar, Klahr, Kley, Lin, 
Lubow, Masset, Nelson, Papaloizou, Quillen, Rice, 
Tanigawa, Varnière, Watanabe...  
 all the physics, but high computational cost                    
only short 103 - 104 orbit “snapshots”

 N-body with simple “disk forces”:
 Early stages: Kokubo & Ida 2002, Thommes, Duncan & 

Levison 2003 (gas drag; type I,II not incl.)
 type II regime: e.g. Lee & Peale 2002, Adams & Laughlin 

2003, Thommes & Lissauer 2003, Moorhead & Adams 
2005 Lee, Thommes & Rasio 2008, MH Lee & Thommes 
2009

 Monte Carlo calculations of a planet in a disk:
 Early stages (cores, type I migration): Alibert et al. 

(2005), Thommes & Murray (2006), Thommes, Nilsson & 
Murray (2007)

 From beginning to end: Ida & Lin (2004a, b, 2005, 2008)

Ida & Lin

Bryden et al.

Lee & Peale
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Thommes, Matsumura & Rasio (Science 2008): 
A hybrid N-body + gas disk code:

 Further development of Thommes (2005) code
 N-body part: SyMBA symplectic integrator (Duncan, Levison & Lee 

1998)
 Gas disk: 1-d, alpha viscosity
 Planet-disk torques

 Linear regime (type I): migration rate from Tanaka, Takeuchi & Ward (2002)
 Nonlinear regime (type II): planet-disk torque density (Goldreich & Tremaine 

1980, Ward 1997)

 Gas accretion:
 assume core accretion 
 Early core accretion: fit to Pollack et al. (1996), like Bryden et al. (2000)
 Later: fit to hydro simulations (Tanigawa & Watanabe 2002). But see 

Machida et al. (2010) for latest...
 Solids accretion: Oligarchic growth (Kokubo & Ida 1998) with gas-

envelope enhancement, scaled to Chambers (2006)
 ...Can model life of a typical protostellar disk in a few weeks.
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How we plot the output: Example 
“movie frame”

“Afterimage” of 
planets removed
at inner edge
(label: Earth masses, 
total)

Planetary gas envelope
(label: Earth masses)

Planetary solid core
(label: Earth masses)

Gas disk surface 
density

Planet eccentricity

Planet inclination

Simulation time

Monday, February 22, 2010



sThommes, Matsumura & Rasio, Science 2008

Monday, February 22, 2010



sThommes, Matsumura & Rasio, Science 2008

Monday, February 22, 2010



sThommes, Matsumura & Rasio, Science 2008

Monday, February 22, 2010



An initial burst of gas 
giant formation
Core accretion: 
time to grow a gas giant = [time to 
finish core] + [time until runaway 
gas envelope accretion]

=τcore+ τKH

τcore increases with r,

final mass Miso increases with r,

 τKH decreases with Miso  

minimum gas giant formation time, 
=τgiant, occurs at some radius.  For 
typical parameters, this is in the 
Jupiter-Saturn region (Ikoma, 
Nakazawa & Emori 2000)
initial burst of gas giant formation 
at timeτgiant starts at one radius, 
spreads and slows down 

Kokubo & Ida, ApJ 2002
(see also Thommes et al, Icarus 2003)

Ikoma et al, ApJ 2000
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mass

disk viscosity
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No gas giants
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No gas giants

Lots of gas giants, lots of migration

Thommes et al, Science ‘08
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τgiant < τdisk

τgiant > τdisk

τ giant ≈
 τ disk
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Throwing out the leftovers

 Onset of gas giant formation usually sends out 
“spray” of scattered cores

  Solves the problem of Uranus and Neptune:  
originate in the Jupiter/Saturn region, then 
scattered out (Thommes, Duncan & Levison, 
Nature 1999)
 ...thus Uranus/Neptune analogues common!

 But that’s not all...

=
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Distant giant planets

 Fomalhaut b:
 Kalas et al. (2008): companion at ~115 AU
 <3 MJup (Marengo et al. 2000, Chiang et al. 2009) 
 low eccentricity, e~0.1

 HR 8799: Marois et al. (2008)
 d: 24 AU, 10 Mjup

 c: 38 AU, 10 Mjup

 b: 68 AU, 7 Mjup

 ...and all e < 0.4
 1RXS J160929.1-210524

 Lafreniere et al. (2008): 330 AU, ~8 Mjup  
18

Monday, February 22, 2010



How the $#@& do you grow 
something like this?!?

 in-situ core accretion? ☹Not beyond 35 AU (Dodson-
Robinson et al. 2009)

 post-formation outward migration...?
 ...by planetesimal scattering (Hahn & Malhotra 1999 Gomes 

et al. 2005)? ☹Not enough plsml mass

 ...by type III? ☹Too short-range (Peplinski et al. 2008), 
anyway not applicable for M > Mjup

 ...of 2 planets sharing a gap (Masset & Snellgrove 2001, 
Crida et al. 2009)? ☹Requires non-accreting planets

 post-formation scattering? ☹Stable orbits unlikely  
(Dodson-Robinson et al. 2009)

 direct gravitational instabily? ☹Always problematic
19
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Alternative: (i) scatter cores 
              (ii) cores accrete gas

 Advantages:
 Cores easily scattered
 At large radius, core’s planetesimal accretion choked 

off ➡ facilitates runaway gas accretion (Pollack et al. 

1996, Ikoma et al. 2000)

20

Monday, February 22, 2010



Alternative: (i) scatter cores 
              (ii) cores accrete gas

 Advantages:
 Cores easily scattered
 At large radius, core’s planetesimal accretion choked 

off ➡ facilitates runaway gas accretion (Pollack et al. 

1996, Ikoma et al. 2000)

20

Monday, February 22, 2010



2D hydro simulation

 FARGO (Masset 2000, http://fargo.in2p3.fr/)
 Accretion scheme modified for core accretion (much slower!)
 Initial condition: M=15 M_Earth, q=10 AU, Q=500 AU, 

depleted gas disk (1/20 ΣMMSN)
21

log spacing in radius, 100 and 200 rings/
decade (i.e. 200X314, 400X628)
-> scale height =2.5 and 5 cells at 1 AU, 8 
and 16 cells at 100 AU (disk is flared)
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Summary
 Planetary systems born in complex, stochastic 

interplay of planet-disk interaction, planet-
planet interaction, and competitive 
accretion
       

 ... hot Jupiters, resonances, crowded 
systems, high eccentricities

 Solar System analogues when τgiant ≈ τdisk              
 probably less common

 Scattered cores ARE common.  End up as
 failed cores, i.e. Uranus/Neptune analogues
 distant giant planets
 possible variant: outward core migration by 

planetsimal scattering (Levison, Thommes & Duncan 
2010, arXiv:0912.3144
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