Fxtra-solar planets

The $\mathcal{H A R P S}$ GTO Legacy
Current census of the Cow-mass planet population

Stéphane Udry
Geneva Observatory, Geneva University

Ф「anetary mass distríbution.

Planet Detectability with radial velocities

$$
k_{1}=\frac{28.4 \mathrm{~m} \mathrm{~s}^{-1}}{\sqrt{1-e^{2}}} \frac{m_{2} \sin i}{M_{\mathrm{Jup}}}\left(\frac{m_{1}+m_{2}}{M_{\mathrm{Sun}}}\right)^{\frac{-2}{\dot{i}}}\left(\frac{P}{1 \mathrm{yr}}\right)^{-1 / 3}
$$

Jupiter	$@ 1 \mathrm{AU}$	$: 28.4 \mathrm{~m} \mathrm{~s}^{-1}$
Jupiter	$@ 5 \mathrm{AU}$	$: 12.7 \mathrm{~m} \mathrm{~s}^{-1}$
Neptune	$@ 0.1 \mathrm{AU}$	$: 4.8 \mathrm{~m} \mathrm{~s}^{-1}$
Neptune	$@ 1 \mathrm{AU}$	$: 1.5 \mathrm{~m} \mathrm{~s}^{-1}$
Super-Earth $\left(5 \mathrm{M}_{\oplus}\right)$	$@ 0.1 \mathrm{AU}$	$: 1.4 \mathrm{~m} \mathrm{~s}^{-1}$
Super-Earth $\left(5 \mathrm{M}_{\oplus}\right)$	$@ 1 \mathrm{AU}$	$: 0.45 \mathrm{~m} \mathrm{~s}^{-1}$
Earth	$@ 1 \mathrm{AU}$	$: 9 \mathrm{~cm} \mathrm{~s}^{-1}$

A few m/s precision OK for giant planets e.g. Jupiters out to $>5 \mathrm{AU}$

Need to go below $1 \mathrm{~m} / \mathrm{s}$

 for close super-Earths!- Observatoire de Genève
- Physikalisches Institut, Bern
- Observatoire Haute-Provence
- Service d'Aéronomie, Paris
- ESO
thorium calibration
2-fiber fed
$\Delta R V=1 \mathrm{~m} / \mathrm{s}$

$$
\stackrel{\mathrm{I}}{\Delta \mathrm{~T}=0.01 \mathrm{~K}}
$$

I
$\Delta \mathrm{p}=0.01 \mathrm{mBar}$

Precision at work -> zoom toward smaller-mass planets

Earth

Jupiter

The HARPS search for low-mass planets

- Sample of ~400 slowly-rotating, nearby FGK dwarfs from the CORALIE planet-search survey + known planets
- HARPS $\log \left(R^{\prime} _H K\right)<-4.8=>~ ~ 280$ good targets Non evolved (Sousa et al. 2009)
- Observations ongoing since 2004
- Focus on low-amplitude RV variations

HARPS

Harps: a blossom of candídates (1)

HD 69830: A trio of Neptunes

```
P1 = 8.67 days
P2 = 31.6 days
P3 = 197 days
```

$$
\begin{array}{ll}
\mathrm{a}=0.078 \mathrm{AU} & \mathrm{M} \operatorname{sini}=10.2 \mathrm{M}_{\text {Earth }} \\
\mathrm{a}=0.186 \mathrm{AU} & \mathrm{M} \operatorname{sini}=11.8 \mathrm{M}_{\text {Earth }} \\
\mathrm{a}=0.63 \mathrm{AU} & \mathrm{M} \operatorname{sini}=18.1 \mathrm{M}_{\text {Earth }}
\end{array}
$$

Orbital phas

An emerging population of Hot Neptunes and

Mayor et al. A\&A 2009

Super-Earths

$P_{1}=4.31$ days
$\mathrm{e}_{1}=0.02$
$m_{1} \operatorname{sini}=4.3 M_{\oplus}$
$P_{2}=9.62$ days
$\mathrm{e}_{2}=0.03$
$m_{2} \operatorname{sini}=6.9 M_{\oplus}$
$\mathrm{P}_{3}=20.5$ days
$\mathrm{e}_{3}=0.04$
$m_{3} \operatorname{sini}=9.7 \mathrm{M}_{\oplus}$

HD 40307
K2 V
Dist 12.8 pc
$[\mathrm{Fe} / \mathrm{H}]=-0.31$
$\mathrm{O}-\mathrm{C}=0.85 \mathrm{~m} / \mathrm{s}$
135 observations

+ drift $=0.5 \mathrm{~m} / \mathrm{s} / \mathrm{y}$

Two super-Earth (5-7 MEarth) in a 4-planet. system + a very light planet of 1.94 MEarth

P1=3.15d Ml=1.94MEarth P2=5.37d M2=15.7MEarth P3=12.9 d M3=5.4MEarth P4=66.8 d M4=7.1 MEarth

$\mathcal{H a r g s : ~ e x p l o r a t i o n ~ o f ~ s m a l l - m a s s ~ d o m a i n ~}$

1. New mass domain

Formation tracks

Monte-Carlo Simulations of planet formation via core accretion

Some properties of close-in low-mass planets

1) Mass distribution

Observations (normalized distribution)

Models
(Mordasini et al. 2009)

Statistics of occurrence low-mass planets

- Sample of ~400 slowly-rotating, nearby FGK dwarfs
- HARPS $\log \left(R^{\prime} _H K\right)<-4.8 \quad=>~ \sim 280$ good targets non evolved
- Stars with too small \# of observations: 117 stars

Nothing	Rather no planet	Hint of planet	Planets
55/163	14/163	31/163	63/163

34%
8\%

Between 39\% (conservative) and 58\% (optimistic) of solar-type stars in the HARPS high-precision survey host planets with masses below $50 \mathrm{M}_{\text {Earth }}$

Systems with Neptunes and super-Earths An emerging new population.

Properties?
comparison with giant panets?

Some properties of close-in low-mass planets

1) Mass distribution

- Mass distribution grows towards lower masses, as predicted by core accretion (Mordasini et al. 2008)
- Detection bias below $\sim 10 \mathrm{M}_{\oplus}$

Some properties of close-in low-mass planets

2) Period distribution

- For small-mass planets, no peak at ~ 3 days. Rise to >10 days? migration stops earlier than for gas giants ? No stopping mechanism? Type I ?

DCanetary multiplicity for systems with at least' one \mathbb{N} eptune or Super-Earth (in \mathcal{V} R surveys on(y)

- M stars
- GJ 436
$\mathrm{N}+$??
- GJ $876 \quad R+2 G$
- GJ 581 3R
- GJ $674 \quad N$
- GJ $176 \quad \sim 50 \%$ of multi-planet systems
- G and K stars
- $55 \mathrm{Cnc} \quad \mathrm{N}+4 \mathrm{G}$
- MuAra $N+3 G$
- GJ 777A $\quad N+G$
- HD 69830

3N

- HD 4308 N
- HD $219828 \quad N+G$
- HD 40307 3R
- HD $181433 \quad R+2 G$
- HD $47186 \quad N+G$
- HD7924 R

R Super-Earth
N Neptune-type
G Gaseous giant planet

Trend confirmed by unpublished candidates
(including curved drift)

Multi-planet systems

(HARPS)

Metallicíty corrélation of planet-host stars

Giant gaseous planets stars with planets are more metal rich?
(Gonzalez 1997, 1998, 1999)

Santos et al. 2001-2006

- Well-defined samples with and without planets
- Uniform analyses
- Large number of stars

Average: 2 regimes

+ power law

Constant probability at low metallicities ?

No metallicity correlation for low-mass planets ?

Фrimary-mass effect

Equal bin in $\log \left(\mathrm{M}_{\text {star }}\right)$

- M dwarfs
- solar stars
- intermediate masses

Planetary system mass
 planet masses/star number

=> mass of planetary material scales with $\mathrm{M}_{\text {star }}$

RV bias

underestimate the last bin

Giant planets vs super-Earths

- Planetary mass distribution
- continuous till high values (>20 Mup)
- bimodal, new low-mass planet population for small masses
- small-mass population: rising towards low masses
- Period distribution
- giants: accumulation at short period: migration effect
- low-mass planets: no accumulation -> type I migration?
- Planet eccentricity
- wide range of values observed, no significant differences between the 2 populations
- Planet multiplicity
- seems to be the rule
- Host star metallicity
- higher frequency of giants around metal-rich stars (not observed for giant stars?)
- correlation not observed for low-mass planets
- Low-mass planets: planet mass vs star metallicity weak correlation
- Primary mass
- scaling between M1 and planetary material in the system
- dependency of gaseous/solid ration on M1

Planetary parameter diversity:

CoRoT., M-Dwarf surveys
\because Transit \rightarrow fractional radius
$\because \because \rightarrow$ (relative to hos
$\because \quad$ inclination.
$\because \quad$ RV planetary mass

```
- 2 salid planets:
- CoRóT-7b : Period \(\sim 0.85^{\circ} \mathrm{d}\)
- MEarth-1b: Period ~ 1.50 d
=> Divelsity
```


Detection of Earth.twins in the HZ of solar-type stars ?

