

Political efforts

- Best approach to take?
 - different approaches (astrometry, direct detection, etc.)
- USA
 - NASA decadal plane
 - Exoplanet Task Force (Astron. and Astroph. Advisory Committee, Lunine et al.)
 - Exoplanet Forum (NASA Navigator Program, Traub et al. Precursor science for the Terrestrial Planet Finder)
- Europe
 - Astronet infrastructure roadmap
- Blue Dot Team (lobbying for planet characterisation mission)
 - ESA ExoPlanet Roadmap Advisory Team (EPR-AT)

Present state of RV searches

- majority of known planets: ~ 400
 - => statistical distributions of planet and star parameters
- HARPS precision:
 - ~80 cm/s = best "raw" rms around published solution Distribution of rms of high-precision HARPS survey: mode=1.4m/s

- => includes
 - instrumental effects
 - stellar effects
 - photon-noise
 - unknown planets

- Population of Neptune-mass planets and super-Earths

Some properties of close-in low-mass planets

1) Mass distribution

Planet Detectability with radial velocities

$$k_{1} = \frac{28.4 \text{ m s}^{-1}}{\sqrt{1 - e^{2}}} \frac{m_{2} \sin i}{M_{\text{Jup}}} \left(\frac{m_{1} + m_{2}}{M_{\text{Sun}}} \right)^{-2/3} \left(\frac{P}{1 \text{ yr}} \right)^{-1/3}$$

Jupiter @ 1 AU : 28.4 m s^{-1}

Jupiter @ 5 AU : 12.7 m s⁻¹

Neptune @ $0.1 \text{ AU} : 4.8 \text{ m s}^{-1}$

Neptune @ 1 AU : 1.5 m s⁻¹

Super-Earth (5 M_{\oplus}) @ 0.1 AU : 1.4 m s⁻¹

Super-Earth (5 $\rm M_{\oplus})$ $\,$ @ 1 AU $\,$: 0.45 m $\rm s^{\text{-}1}$

Earth @ 1 AU : 9 cm s⁻¹

A few m/s precision OK for giant planets e.g. Jupiters out to > 5 AU

Need to go below 1 m/s for close super-Earths!

Required an order of magnitude improvement

Radial velocities in a reference frame

Earth rotation and Earth orbital motion around the Solar System's barycenter

Higher RV precision = ???? Earth effect on the Sun = 9 cm/s interstellar medium Earth atmosphere Instrumental stability Astroclimatic Unstable 1) Instrumental error T variation Telescope Guiding telescope <-> detector Focus Seeing - stability and repeatability Affect the spectrum location on CCD refractive index Wavelength drift Instrumental stability must be monitored during the exposure

The simultaneous thorium technique

Wavelength calibration and instrumental stability monitoring:

- > Reference = emission spectrum from an arc lamp (ThAr)
- ➤ Two fibers: A = star light, B = lamp light
- >Science exposure contains simultaneous wavelength calibration
- Instrumental drifts assumed to be the same on the two fibers

The iodine cell technique

- >Wavelength calibration and instrumental stability monitoring:
 - > Reference: iodine absorption cell at the spectrograph's entrance

➤ lodine spectrum superimposed on stellar spectrum

11

Pros and Cons of the Two Techniques

lodine cell:

- + Easy to implement on any spectrograph
- + Suitable for slit spectrographs
- Spectral range: 500-630 nm
- Requires very high S/N spectra
- ➤ Precision of 2-3 m/s

Simultaneous thorium:

- Requires a stabilized spectrograph
- Suitable for fiber spectrographs only
- + Spectral range: 380-680 nm
- + Requires high S/N spectra
- ➤ Precision of <1 m/s

For a similar precision, the iodine cell technique requires > ~10 times much more photons than the simultaneous thorium technique

Higher RV precision = ????

Earth effect on the Sun = 9 cm/s

Intermediate medium Earth atmosphere interstellar medium

1) Instrumental error

telescope <=> detector

- stability and repeatability
- calibration and wavelength solution
- optimum reduction
- optimum guiding, centering

-

ESPRESSO @ VLT (1 UT - 4 UT)

Expected precision ~10 cm s⁻¹

Small-mass planets, fundamental constant variability, QSOs, cosmology

CODEX @ E-ELT

Expected precision ~1 cm s⁻¹

Cosmology (expansion of the Universe), QSOs, planets, etc.

Photon noise

HARPS-type spectrograph: R > 100'000, ε_{Tot} = 6%

1) HARPS/ 3.6m

- 1 m/s in 15' on V=10 star -> 25-30 cm/s on VLT
 - -> ~5 cm/s on E-ELT

2) ESPRESSO/VLT

Vlim = ~8 for 10 cm/s in 15'

- => Many solar-type stars
 - ~700 non-active stars
- => Earth twin search

For 1-3 cm/s, 3-5 mag brighter
=> TEST for CODEX on
a few very bright stars

3) CODEX/E-ELT

1 cm/s on star with V<6 10 cm/s on V=11 stars TRANSITS (PLATO)

Stellar intrinsic limitations

Harps: exploration of small-mass domain

All published orbits with residuals < 2.5 m/s between 2004 and 2008 are from HARPS

Before HARPS, limit in precision was not set by the star but by the instrument

Still true with HARPS?

Stellar oscillations

Pulsation noise on α Cen B and other stars

▶p-modes average well on time > ~1 characteristic timescale

Detection limits (simultions)

alpha Cen B with actual calender of HD69830 (3-Neptune system)

- Averaging => weak period effect!
- This case = "no spot" phase (~3 years for the sun)

short P

at 1 AU

• Spot simulations to introduce activity effect in a better way still missing the longer timescales

Simulations of spot effects on radial velocities

Activity index: log(R'HK)

1) SOAP: effect of 1 spot (Bonfils et al. in prep)

Simulations of spot effects on radial velocities

- 2) Realistic families of spots 1 family = ~ 25 spots
- Takes into account: from observation of the Sun
 - Evolution of spots: growth, filling factor
 - # of spots = $f(log[R'_{HK}])$

Law of appearance of spots:

$$P[(N(t+\tau) - N(t)) = k] = \frac{e^{-\lambda \tau} (\lambda \tau)^k}{k!}$$
 $k = 0, 1, ...$

Number of spots depends on activity level

Simulations of spot effects on radial velocities

Optimum "affordable" observing strategy

- 10-15 min on target per measurement => to average stellar oscillations => <~5 cm/s of photon noise
- 3 measures per night (over 3-4 hours) to average granulation
- observe the star over several +/- consecutive nights to average activity effects
- follow the star as much as possible along the year: 8 months
- derive simultaneous diagnostics to characterize the activity level
 correct the effect if possible

From RV rms to detection limits through Monte Carlo simulations

Longer periods => larger possible bins for average => small effect of the period on detection capability

HD 69830 >>>> 0.35 m/s

- On 5 seasons ...
 residuals to the orbital fit
 - Residuals as function of the binning on days

Encouraging results....

Binning effect calculated on several HARPS stars

Warning: observation strategy not optimum + instrumental effect + photon noise

- only 1 observation per night
- sparse sampling (not every night)

Simulations of stellar noise applied to ...

...ESPRESSO/VLT

A 2.5 Earth-mass planet in the habitable zone of a quiet K star (P=200 days)

(Santos et al. 2009, Porto conf; Dumusque et al., in prep)

Transits of terrestrial planets

• Giant planets : 0.01 mag

• Terrestrial planets: 0.0001 mag

Transits from space

Kepler: waiting for results

CoRoT: CoRoT-7b

PLATO field-of-view

PLATO field-of-view

With a 2nd year step and stare

RV precision 1 m/s 10 cm

Probability of confirmed planets: photometric detection + RV follow-up geometric probability star magnitude

Only the long runs

Hypotheses

- Sample (Kepler+PLATO) 450'000 stars
- Every planet type around every star

Impact of mass and radius measurements

For terrestrial planets accurate radii from transit photometry provide strong constraints on planet interior!

Wagner et al. 2009, also: Valencia et al. 2007

