
Detection of Earth twins in the HZ of solar-type stars ?

• Best approach to take?

– different approaches (astrometry, direct detection, etc.)

• USA

– NASA decadal plane

– Exoplanet Task Force (Astron. and Astroph. Advisory Committee, 
Lunine et al.)

– Exoplanet Forum (NASA Navigator Program, Traub et al.         
Precursor science for the Terrestrial Planet Finder)

• Europe

– Astronet infrastructure roadmap

– Blue Dot Team (lobbying for planet characterisation mission)

– ESA ExoPlanet Roadmap Advisory Team (EPR-AT)                   

!oli"cal e#ort$



RV
From the ground

Transits from space

Microlensing

low probabiliy

Space Astrometry?

!resent sta% of RV searche$

 

- majority of known planets: ~ 400

                                       => statistical distributions of planet and star parameters

- HARPS precision:  

                   ~80 cm/s = best “raw” rms around published solution

                   Distribution of rms of high-precision HARPS survey: mode=1.4m/s
 

- Population of Neptune-mass planets and super-Earths

=> includes

     - instrumental effects

     - stellar effects

     - photon-noise

     - unknown planets



Some properties of close-in low-mass planets

1) Mass distribution

Prediction of 
a large population 
of terrestrial planets

Observations
(normalized distribution)

Models
(Mordasini et al. 2009)

Giant planets

super-Earths

Required an order of 
magnitude improvement

Planet Detectability with radial velocities

Jupiter  @ 1 AU  : 28.4 m s-1

Jupiter  @ 5 AU  : 12.7 m s-1

Neptune  @ 0.1 AU  : 4.8 m s-1

Neptune  @ 1 AU  : 1.5 m s-1

Super-Earth (5 M!)  @ 0.1 AU  : 1.4 m s-1 

Super-Earth (5 M!)  @ 1 AU  : 0.45 m s-1

Earth  @ 1 AU  : 9 cm s-1

Need to go below 1 m/s 
for close super-Earths!

A few m/s precision OK 
for giant planets 
e.g. Jupiters out to > 5 AU
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Radial velocities in a reference frame

Vr = Vspectrum - Vinstrument - VEarth

Barycentric radial velocity = wavelength shift reduced to the 
barycenter of the Solar System

Velocity of the observed spectrum with respect to a reference 
point (velocity zero point)

Actual velocity of the spectrograph with respect to a reference point 
(velocity zero point)

Earth rotation and Earth orbital motion around the Solar System’s 
barycenter

Higher RV precision = ….  ????

Earth effect on the Sun = 9 cm/s

Earth atmosphere               interstellar medium

1) Instrumental error
telescope <-> detector
   - stability and repeatability



Higher RV precision = ….  ????

Earth effect on the Sun = 9 cm/s

Earth atmosphere               interstellar medium

1) Instrumental error
telescope <-> detector
   - stability and repetability
   - calibration and 
             wavelength solution
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Wavelength calibration and instrumental stability monitoring:

!Reference = emission spectrum from an arc lamp (ThAr)

!Two fibers: A = star light, B = lamp light

!Science exposure contains simultaneous wavelength calibration

The simultaneous thorium technique

 

!Instrumental drifts assumed to be the same on the two fibers

Stellar spectrum

ThAr lines
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The iodine cell technique

!Wavelength calibration and instrumental stability monitoring:

!Reference: iodine absorption cell at the spectrograph’s entrance

!Iodine spectrum superimposed on stellar spectrum

12

Pros and Cons of the Two Techniques

Iodine cell:

+Easy to implement on any 
spectrograph

+Suitable for slit spectrographs

"Spectral range: 500-630 nm

"Requires very high S/N spectra

!Precision of 2-3 m/s

Simultaneous thorium:

"Requires a stabilized spectrograph

"Suitable for fiber spectrographs only

+Spectral range: 380-680 nm

+Requires high S/N spectra

!Precision of <1 m/s

For a similar precision, the iodine cell technique 
requires > ~10 times much more photons than the 

simultaneous thorium technique



Steinmetz et al. 2008

Higher RV precision = ….  ????

Earth effect on the Sun = 9 cm/s

Earth atmosphere               interstellar medium

1) Instrumental error
telescope <-> detector
   - stability and repetability
   - calibration and 
             wavelength solution
 

ThAr

Laser comb

Replace ThAr lamp 
by laser comb

Higher RV precision = ….  ????

Earth effect on the Sun = 9 cm/s

Earth atmosphere               interstellar medium

1) Instrumental error
telescope <-> detector
   - stability and repetability
   - calibration and 
             wavelength solution
   - optimum reduction
   - optimum guiding, centering
   - ....

Butler et al. 2003

Alpha Cen A with Iodine 

Alpha Cen B with ThAr 

HARPS@3.6

Alpha Cen A with Iodine 

UCLES@AAT

UVES@VLT



Higher RV precision = ….  ????

Earth effect on the Sun = 9 cm/s

Intermediate medium
Earth atmosphere                    interstellar medium

1) Instrumental error
telescope <=> detector
   - stability and repeatability
   - calibration and 
             wavelength solution
   - optimum reduction
   - optimum guiding, centering
   - ....

ESPRESSO @ VLT (1 UT – 4 UT)

Expected precision  ~10 cm s-1

Small-mass planets, fundamental constant variability, 
QSOs, cosmology

CODEX @ E-ELT

Expected precision ~1 cm s-1

Cosmology (expansion of the Universe), QSOs, planets, 
etc.

Texp = 900 s

DTel = 42 m

DTel = 8 m

# ~ 1/SNR ~ 1/ DTel

Photon noise
HARPS-type spectrograph: R > 100’000, $Tot = 6%

<=>HARPS

1) HARPS/ 3.6m 
    1 m/s in 15’ on V=10 star
       -> 25-30 cm/s on VLT
       -> ~5 cm/s on E-ELT

2) ESPRESSO/VLT
     Vlim = ~8 for 10 cm/s in 15’

=> Many solar-type stars
~700 non-active stars

   => Earth twin search

  For 1-3 cm/s, 3-5 mag brighter
     => TEST for CODEX on
           a few very bright stars

3) CODEX/E-ELT
   1 cm/s on star with V<6
   10 cm/s on V=11 stars
            TRANSITS (PLATO)

HARPS

VLT

E-ELT



!referred target$

GK

AF

Giants

 

Stellar intrinsic limitations 



All published orbits with
residuals < 2.5 m/s

between 2004 and 2008
are from HARPS

Before HARPS, limit  in 
precision was not set by the 
star but by the instrument

Still true with HARPS?

&arps: explora"on of sma'-mass domai(

Stellar oscillation 
The ! Ara example 

8 nights
250 measures/night
Photon noise < 20 cm/s

Santos et al. 2004
Bouchy et al. 2005
Bazot et al. 2005



Stellar oscillations

rms =0.48 m s-1

% Cen B

Pulsation noise on % Cen B and other stars

Simulated

Eggenberger, 2006, priv. comm.

Measured

HARPS commissioning

1/x

abs(sinc(T))

!p-modes average well on time > ~1 characteristic timescale



Pulsation noise on % Cen B and other stars

Simulated

Eggenberger, 2006, priv. comm.

Measured

HARPS commissioning

1/x

abs(sinc(T))

!p-modes average well on time > ~1 characteristic timescale

Kjeldsen et al. (2005)

Choice of the target 
is important

!Other sources of noise at 
lower frequencies

!requires simulations

Kjeldsen et al. (2005)

Pallé et al. (1995)

Granulation?
! Granulation (& ~ 6 min)

! Mesogranulation (& ~ 3h)

! Supergranulation (& ~ 1 day)

! Active regions (& ~ 10 days)

Stars

Sun

Choice of the target 
is very important



Beat the stellar limitations with

– good target selection

– clever observational strategy

Simulations

  - real asteroseismology observations

  -> noise model   => synthetic observations

 -> detection limits in the mass-period diagram 

strategy

-> RV rms

Dumusque et al. in prep

Detection limits from calculated rms -> detection criterium: K > 2 x rms

                                                                                             (conservative)

From p-modes+granulation point of view

Detection capability depends on

• spectral type

• luminosity class (evolution)

1pt/night

3pt/night, 2h apart

Observing strategy only applicable

on bright stars!!!

=> requires very low photon-noiseDumusque et al. A&A submitted



• Averaging => weak period effect!

• This case = “no spot” phase (~3 years for the sun)

Detection limits (simultions)

alpha Cen B with actual calender of HD69830 (3-Neptune system)

short P at 1 AU 

alpha Cen B

alpha Cen B

alpha Cen A

Tau Ceti

Dumusque et al. A&A submitted

• Spot simulations to introduce activity effect in a better way
still missing the longer timescales

Simulations of spot effects on radial velocities

1) SOAP: effect of 1 spot  (Bonfils et al. in prep)

Activity index: log(R’HK)



&arps: M-dwarf sampl)

Gl436 Gl581

Gl674

22 MEarth 2 super-Earths

10 MEarth

Int
rin

sic

Bonfils et al. A&A 2006

~3 yr

Log(R’HK)

-4.9

-5.0

Feb-10



Simulations of spot effects on radial velocities

Takes into account: from observation of the Sun

• Evolution of spots: growth, filling factor

• # of spots = f(log[R‘
HK])

White & Livington 1981 

-4.99

-4.80

2) Realistic families of spots
       1 family = ~ 25 spots

Time [days]

F
il

li
n
g
 f

ac
to

r

Law of appearance of spots: 

Spot life

Number of spots depends on activity level

RV

Spot #: ~90

Filling factor: 0.001

3 yr

40 days

1 m/s

Simulations of spot effects on radial velocities

3) effect of realistic spot models: case for log(R‘_HK)=-4.9



40 days

1 m/s

Simulations of spot effects on radial velocities

3) effect of realistic spot models: case for log(R‘_HK)=-4.9

RV

Spot #: ~90

Filling factor: 0.001

3 yr

< -4.9: 47%

< -5.0: 24%

HARPS

volume-limited 

sample

Simulations of spot + granulation + p-mode effects on radial velocities

Diff. precisions and activities => precision mainly drives total exposure time 

log(R’HK)=-4.8 log(R’HK)=-4.9

log(R’HK)=-5.0

Dumusque et al. in prep



Optimum “affordable” observing strategy

•10-15 min on target per measurement 
  => to average stellar oscillations  =>  <~5 cm/s of photon noise

• 3 measures per night (over 3-4 hours) to average granulation 

• observe the star over several +/- consecutive nights to average activity 
effects

• follow the star as much as possible along the year: 8 months

• derive simultaneous diagnostics to characterize the activity level
      => correct the effect if possible

From RV rms to detection limits through Monte Carlo simulations

Longer periods => larger possible bins for average 

=> small effect of the period on detection capability

Dumusque et al. in prep
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&D 69830     >>>>>   0.35 m/$ 

• On 5 seasons ...

residuals to the orbital fit
– Residuals as function of the binning on .... days

rms global: 64 cm s-1

rms after binning: 35 cm s-1 !!

Lovis et al. 2006

Encouraging results....

Binning effect calculated on several HARPS stars

HD69830 HD40307 HARPS constant

Warning: observation strategy not optimum + instrumental effect + photon noise
                - only 1 observation per night
                - sparse sampling (not every night)  



Simulations of stellar noise applied to ...

...ESPRESSO/VLT

A 2.5 Earth-mass planet in the habitable zone of a quiet K star (P=200 days)

(Santos et al. 2009, Porto conf;

 Dumusque et al., in prep)

Transits from space
Kepler:  waiting for results
CoRoT: CoRoT-7b

Transits of terrestrial planets

• Giant planets       : 0.01    mag
• Terrestrial planets: 0.0001 mag    

COROT

KEPLER

COROT-7b 1.7 REarth



41CoRoT-7b
(Queloz et al. 2009)

Active star 
=> Effect of the planet 
much smaller than the 
observed RV variation!!!

Activity indicators

Planet diversity
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PLATO ESA mission under study
=> bright stars

Planetary radius - Tools

>,6,!=?@(

'31(L"%'(*,$L":1.(",*M9(

1N'"#%,-#"(8-#$1'5(

O&:/-#+,$

H(F1#"'3(8-#$1'(#",/$.(#(

%,-#"('981(%'#"5((

P&Q3'(*/"21%()",:(%8#*1<

C5CHCR

153 Transits

3 Transits



Planetary mass  
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CoRoT

CoRoT

Kepler
PLATO

PLATO

PLATO field-of-view

2 initial long runs (2-3 years)



CoRoT

CoRoT

Kepler
PLATO

PLATO

PLATO field-of-view

With a 2nd year step and stare

Simulations of confirmed planets yield

< -4.9: 47%

< -5.0: 24%

HARPS

1. Select star in the field (list)

! spectral type, vsini, magV

2. Select the activity level (random)

! log(R’_HK)=f[N(B-V)]

3. Select a planet (e.g. from set of Bern models)

    (determined orrandom)

! mass, period (separation)

! P => possible binning

! corresponding RV precision

4. Detection criteria = f(Mpl, RV precision)

! planet is characterized or not

To be adapted to
 a se

lected fie
ld



bright stars that can be characterized 

Kepler/Harps-N PLATO/ESPRESSO
RV precision 1 m/s 10 cm/s

vs

Probability of confirmed planets: photometric detection   +   RV follow-up
                                                     geometric probability       star magnitude

Alibert, Benz et al.

Only the long runs

Hypotheses

• Sample (Kepler+PLATO)
   450‘000 stars

• Every planet type 
           around every star
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Stellar reflected light and secondary transits

      PLATO:

>1,000 such stars

many transiting 

planets expected

phase

0.0     0.2      0.4      0.6      0.8      1.0
-10

-5

0

5

PLATO

1.5 R! Porb=2.2d  a=0.038 AU star=K0-dwarf mV=8

3 years of observation 

light modulation with phasesecondary transit
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KeplerCoRoT-1b

Snellen et al. 09 Borucki et al. 09

HAT-P-7b 

130 ± 11 ppm

mV = 10.5

15.3 R!   

0.038 AU   

P = 2.2 days

duration: 10 days



Impact of mass and radius measurements

For terrestrial planets accurate radii from transit photometry provide strong 
constraints on planet interior!

Wagner et al. 2009, also: Valencia et al. 2007

current error bar

standard error bar

PLATO error bar


