the exoplanet-brown dwarf connection

adam burgasser (ucsd)

this talk is not about stars (see title) it's about brown dwarfs and why its worth paying attention them

OLD MAN YELLS AT CLOUD 1: sá garacio peri net.) kf or suke wif: jer I had ELSACT !!! mistju Kutija d' hdy i'vr 's_e jal 50 - vem: .15 ... or a why ne casew = 1 13:3] 1.72 m 1. " TIL "0. TTI) laura (z'i pahil Oldstor Abraham Simbles INI COST EIS 3 riter and selling parties

stars = transducers

pre-main-sequence: gravitational->thermal->radiation

stars = transducers

main sequence: nuclear->thermal->radiation

pre-main-sequence: gravitational->thermal->radiation

stars = transducers

main sequence: nuclear->thermal->radiation

pre-main-sequence: gravitational->thermal->radiation degenerate sequence: thermal->radiation (mass < 0.07 M_☉)

(lack of) fusion has consequences

cushing et al. (2005)

"ultracool dwarfs" are unevolved stars with t_{eff} < 3000 K, including late-m, l, t & y dwarfs

"brown dwarfs" are objects that don't sustain h fusion (m < 0.07 M_{\odot})

"planets" are objects that don't undergo any fusion (m < 0.01 M_{\odot}), and/or formed in a protoplanetary disk and/or the subject of a nasa funding proposal

how many plots this week stopped at t_{eff} = 3000 K or m = 0.1 M_{\odot}?

How well are M_* and R_* determined in the literature?

- NASA Exoplanet Archive
 - Many different methods, many different authors

Kepler observed thousands of Sun-like stars -1 Surface Gravity (log g) Relative Likelihood 2 3 5 10 15 20 25 30 35 40 12 10 8 6 4 3 0 5 Rotation Period (days) Temperature (10³ K) Montet, Tovar, and Foreman-Mackey (2017)

ben

Fraction of stars flaring in open clusters

Rotation periods of field stars

Let's go brown....

UNIVERSITY® BIRMINGHAM

kepler input catalog

tess input catalog

a program to look over here

apogee (aspcap)

lamost

gaia dr2 (apsis)

andrae et al. (2018)

all y'all

mist isochrones

dotter (2016) choi et al. (2016)

this is unfortunate, because brown dwarfs could be exceptionally productive for exoplanetary science

there are a lot of brown dwarfs in the galaxy...

mf: kroupa (2001); chabrier (2003) lf: mužic+ (2017); kirkpatrick+ (2019)

*assuming a mass range 0.01-10 M_{\odot}

credit: nasa

... we're pretty sure they can make planets...

testi et al. (2016)

... maybe a lot of planets...

hardegree-ullman et al. (2019)

... less likely to be disturbed by binaries...

... and those planets are relatively easy to find

triaud+ (2013); he+ (2017)

... and those planets are relatively easy to find

triaud+ (2013); he+ (2017)

... but most of them are *really* cold & faint...

evolutionary models: baraffe et al. (2003)

... but most of them are *really* cold & faint...

kirkpatrick et al. (2019)

... maybe too cold & close for habitability

muirhead et al. (astro2020 wp)

about those hell worlds...

artwork by skwaggeragnerok88

... high energy magnetic emission largely disappears at the end of the M dwarf sequence...

... and the winds seem to disappear...

a toy model

a toy model

an issue of age

getting ages for young ultracool dwarfs is doable...

allers & liu (2013)

... but getting ages for old ultracool dwarfs is hard

cold brown dwarfs are natural clocks

cold brown dwarfs are natural clocks

exoplanet searches also helps BD physics

hatzes & rauer (2015)

exoplanet searches also helps BD physics

burgasser & mamajek (2017)

we won't know if we don't look...

saint-ex (san pedro martir, tars mx)

take aways:

- don't ignore the brown dwarfs! they are plentiful, potentially planet-rich, and have strong detection signals
- 2. habitable zones will either be fried or frozen, but there is a narrow range of masses $(0.075-0.085 M_{\odot})$ that may be just right
- 3. habitability aside, brown dwarf evolution can be used to infer system ages and study exoplanet evolution and formation history over the entire age of the galaxy
- 4. searches have begun, but we need help!

additional slides

... but we need to improve nir-rv precisions

what are the ages of the local bd population?

simulation

- range of ages
- kinematic ages

measurements - kinematic ages

... but most of them are *really* cold & faint...

