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Today I'll mostly talk

PO ransiting

exoplanets’.

The methods can apply

more broadly !

* this is what | know about and work on!



Exoplanet population
inference




planet radius [Rg]
|—\
-

|—\
1 1 I

orbital period [days|

data: NASA Exoplanet Archive



100 200 300 400 500 600 700
Period [day]

Burke, Christiansen et al. (2015)



Take these catalogs and

get the m of planet

formation and evolution.
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What is an occurrence rate?



M expected number [

planets per star.



The m of stars

with planets.




M expected number By

planets per star

per unit planet property !







None of these definitions
is ILLEGLLA L Gl than
the others.




But. They are all m



They have different m



They all depend on a
specific (often unstated)

definition of "planets”




So. It can be hard to
compare and understand
how they relate.




[P “The occurrence

rate is 10%."

* including me and others in the room



TP “The occurrence

rate is 10%."

V41 H "what does it all
mean?!1?212"

* including me and others in the room
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what do these numbers mean?
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what do these numbers mean?
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Simulations
github.com/dfm/exostar19



How to estimate an
occurrence rate?




© Inverse detection efficiency

© Probabilistic modeling

© Approximate Bayesian
Computation



Inverse detection efficiency

] e~ 1
Nex ect —
pect Niot Z Pdet(in)

7=1

Note: don't do this!



Probabilistic modeling

Nexpect — al'g INaXy; p(NobS7 {$3} ‘ Nexpecta Ntot)

expect



Approximate Bayesian
Computation

TETERR N [ | o BENPN




Approximate Bayesian
Computation

TETERR N [ | o BENPN




© Inverse detection efficiency

© Probabilistic modeling

© Approximate Bayesian
Computation



© Inverse detection efficiency
0

© Probabilistic modeling

|
© Approximate Bayesian

Computation




© Inverse detection efficiency
0

© Probabilistic modeling
I

© Approximate Bayesian
Computation




true number
of planets

P(q;)

) e

observed the properties
number n — X’ of the planets
of planets " ' and the star




observed number true number
of planets of planets

P(n; | x;, q;)

the properties
of the planets
and the star




Start with either E230)

or m planet(s).




There are m options.



observed number

of planets

true number of planets

value of P(n; | x;, q;)



But. We don't m the

true number of planets.













QP(njlx;, ¢j=1)+ (1 —Q)P(n;|z;, ¢;=0)

k this is the parameter
that we want to fit for!




But. We don't m the

properties of the

unobserved planets !







systems with
no planets

P(n; = 0) = [ p(a;) Pln; = 0]2))dz,

= 1—-0Q /p(xj) P(n; =1|xzj, ¢j=1)dx,

systems with
detected planets

P(n; = 1) =p(x;) P(n; = 1]z;)
=plz;) Q P(nj = 1]z, ¢j=1)




systems with
no planets

P(n; = 0) = [ pla;) P(n; = 0] ;) dx,

:1—Q/p(a:j)P(nj: Ly 45— 1)d$3

=1-Q \

| detection
destyesctteenc‘lsp“:l:gts Pro bability

P(n; =1) =p(z;) P(n; = 1]z;)
= p(z;) @ P(n; =1|zj, ¢;=1)




Put it all together.

An exercise for the reader...



the fraction
of stars with
observed planets

N1 1

Q:N0+N1 Py

the
occurrence
rate



the fraction
of stars with
observed planets

N1 1

Q:N0+N1 Py

the
occurrence
rate

Py = /p(%)P(ng‘ = 1|z, ¢j=1)dz;

the detection probability
averaged over the distribution
of planet and stellar properties



the fraction
of stars with
observed planets

G M 1 1 Jz\“:l
the_N()+N1 oo No+ Ny = P

occurrence ‘ j —

rate

Py = /p(%‘)P(ng‘ = 1|z, ¢j=1)dz;

the detection probability
averaged over the distribution
of planet and stellar properties
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see: dfm.io/posts/histogram



observed not obsel ved

truth: 50
inverse-detection-efficiency gives: 28.5 + 5.5

see: dfm.io/posts/histogram



observed not obsel ved

truth: 50
inverse-detection-efficiency gives: 28.5 + 5.5

Mmaximume-likelihood gives: 54.0 + 10.4

see: dfm.io/posts/histogram



Inverse detection efficiency
[T1.T2] the right estimator.




Instead, take the fraction
of detections and divide
by the EV'E 1] detection
efficiency”’.

" averaged over the correct distribution
for all planet and star properties



The key mgredlent Is the
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N0 Hd: an occurrence

rate depends on a lot of
decisions!



O Stellar sample
© Range of planet parameters

© Units

© Planet multiplicity




Complications




© Multiplicity

(planetary and stellar)

© Uncertainties

© False positives

© Heterogeneous catalogs




You end up needing to do

LR G110 over all the

properties of all the planets
and false positives that

you didn't observe !




Mathematica™ m

do that integral.




P can't

do that integral.



1" (4 can't

do that integral’.

* in finite time.



This is where you use
approximate Bayesian
computation (ABC).




This is where you use

likelihood-free inference.




Likelihood-free inference
is a method for doing
rigorous inference \\'/11,
stochastic models !




a realistic catalog

If you can m>

then you can do inference.

The promise of "likelihood-free inference".
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There's still lots to do!
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Take homes




An occurrence rate needs
to come with EY[1] of
metadata.




Comparing occurrence rates:

Check the m
PPN parameter ranges |




m sum the inverse

detection probabilities
for your planets!

*a more reliable estimator is just as easy to compute!



If you're using a method
that FEE O A LWUTHOA, make
4111¢-] the math checks out L




Likelihood-free inference
seems like a promising

way forward.

* a.k.a. Approximate Bayesian Computation (ABC)









p({n;}, {z;}|1Q)=[1-Q P]™° H Qplx;) P(n; = 1|z, ¢;=1)



logp({n;}, {x,;} ) = No log (1 — Q) Fy) + Ny log () 4 constant



logp({n;}, {x,;} ) = No log (1 — Q) Fy) + Ny log () 4 constant

|

Ny 1

Q:N0+N1 o
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Note: this is preliminary & really just a toy...

100'E
10% - '
p)
5 10°- 1072 -
1% : :
7 —
B 10 =
= 107 1 Q
o 1072
=
Z 10!
] 1 -3
10° - 0 _
0 1 2 3 4 5 0 1 2 3 4 5
observed number of planets true number of planets, N
assuming: 0.5 < Rp/Rganh < 8; 10 < a/Rstar < 30
no mutual inclination Kepler data:

only geometric transit probability github.com/dfm/exostar19



Note: this is preliminary & really just a toy...
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