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Today I'll mostly talk 
about  transiting   
exoplanets*. 

The methods can apply 
 more broadly .

* this is what I know about and work on!
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simultaneously solve for a parameterized completeness model
in addition to planet occurrence (Fressin et al. 2013; Farr et al.
2014; Mulders et al. 2015). Others avoid this shortcoming
altogether through an independent planet search pipeline and
pipeline completeness measurement (Petigura et al.
2013a, 2013b; Dressing & Charbonneau 2015).

Christiansen et al. (2015) rectify this shortcoming by
directly measuring the Kepler pipeline completeness of the
Q1-Q16 Kepler pipeline run (Tenenbaum et al. 2014) through
Monte-Carlo transit injection and recovery tests. In this study,
we make use of the Christiansen et al. (2015) Kepler pipeline
completeness parameterization in order to derive the planet
occurrence rates from the resulting Q1-Q16 Kepler planet
candidate sample of Mullally et al. (2015). Another highlight
of this study is a comprehensive analysis of the systematic
errors present in deriving planet occurrence rates with
Kepler data. As exemplified in Youdin (2011) and Dong &
Zhu (2013), we undertake a sensitivity analysis where we
iteratively change an input assumption and recalculate the
occurrence rates. We investigate the following input assump-
tions: pipeline completeness systematics, orbital eccentricity,
stellar parameter systematics, planet parameter systematics, and
planet sample classification systematics.

This paper is organized as follows. Section 2 describes the
pipeline completeness model that quantifies the survey
completeness for any target observed by Kepler. Sections 3
and 4 summarize the stellar properties and planet sample from
the Q1-Q16 Kepler pipeline run adopted for derivation of the
planet occurrence rates. We extend the analysis techniques of
Youdin (2011) by increasing the complexity of the parameter-
ized model for the planet occurrence rate and employ Markov
Chain Monte-Carlo (MCMC) methods for solving the para-
meter estimation problem in Section 5. Section 6.1 presents
results for the planet occurrence rate using a baseline set of
inputs, and we thoroughly explore the systematic errors in this
result through a sensitivity analysis in Section 6.2. We compare
the occurrence rate analysis with previous efforts in Section 7.
We apply the resulting occurrence rates to determine the
occurrence rate for terrestrial planets with an orbital period
equivalent to Venus in Section 9 as well as extrapolating these
results toward longer periods (Section 8) in order to measure a
one year terrestrial planet occurrence rate in Section 10.
Finally, Section 11 summarizes the future work necessary to
improve the accuracy for the resulting planet occurrence rates.

2. KEPLER PIPELINE COMPLETENESS MODEL

This section details an analytic star-by-star model for the
Kepler pipeline completeness. A critical component for model-
ing the completeness of Kepler observations is simulating
the performance of the TPS pipeline module which is
responsible for characterizing the noise present in a light curve
and detection of the transit signals (Jenkins 2002; Tenenbaum
et al. 2012, 2013, 2014). The performance of a transit survey can
be fully specified with intensive, end-to-end Monte Carlo signal
injection and recovery tests (Weldrake & Sackett 2005; Burke
et al. 2006; Hartman et al. 2009; Christiansen et al. 2013; Seader
et al. 2014). Unfortunately, due to their numerically intensive
nature, Monte-Carlo injection tests are not amenable to a
systematic sensitivity analysis, and the tests are limited to the
subset of targets that one performs the analysis upon. Therefore,
we present a simplified analytic model for the Kepler pipeline
that can be readily applied to any observed Kepler target using a

minimum of input data. Fortunately, the joint noise character-
ization, filtering, and detection properties of TPS were designed
to facilitate a well defined and tested detector response for transit
signals even in the presence of astrophysical broadband or red
noise (Jenkins 2002). Given the well defined properties of the
TPS detector, our analytic completeness model can achieve high
fidelity after it is calibrated with Monte-Carlo injection tests. For
a single target, we parameterize the pipeline completeness over a
two-dimensional (2D) grid of orbital period, Porb , and planet
radius, Rp .

2.1. Multiple Event Statistic (MES) Estimation

Modeling pipeline completeness requires modeling the
statistical behavior of TPS and its response to noise in the
presence of a signal (Jenkins 2002; Seader et al. 2013). In the
presence of broadband red noise, TPS considers the so-called
MES to measure the strength of a potential transit signal. In the
null hypothesis case of no signal present, the MES distribution
is Gaussian with an average of zero and unit variance. In the
alternative hypothesis case for the presence of a signal, the
MES distribution is Gaussian but the average MES is shifted
proportional to the S/N of the transit signal. The first step for
modeling pipeline completeness is to estimate the expected
MES of a transit signal for a specified Porb and Rp . This requires
an estimate of the expected transit duration,
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where e is the orbital eccentricity, and the stellar radius, �R , and
orbital semimajor axis, a, are in a consistent set of units. In
Equation (1), we assume Rp � �R , shorten the transit duration
from the central crossing time by a factor of p 4 for its
expectation assuming a uniform distribution of icos for the
orbital inclination (Gilliland et al. 2000; Seager & Mallén-
Ornelas 2003), and include the expected dependence on the
transit duration with e (Burke 2008). We explore the sensitivity
of our results to >e 0 in Section 6.2.2.
Next, we determine the noise present in the light curve

data averaged over the transit duration of interest. TPS

Figure 1. Fractional completeness model for the host to Kepler-22b (KIC:
10593626) in the Q1-Q16 pipeline run using the analytic model described in
Section 2.
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Take these catalogs and 
get the  physics  of planet 
formation and evolution.



That's  hard . 
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4. Isochrone parallax. For each star, we computed an
“isochrone parallax” based on Teff , glog , [Fe/H], and mK

(see Section 3.7). We removed stars where the Gaia and
isochrone parallaxes differed by more than 4σ, due to
likely flux contamination by unresolved binaries.

5. Stellar dilution (Gaia). Dilution from nearby stars can
also alter the apparent planetary radii. For each target, we
queried all Gaia sources within 8arcsec (2 Kepler pixels)
and computed the sum of their G-band fluxes. The ratio
between this cumulative flux and the target flux r8
approximates the Kp-band dilution for each transiting
planet. We required that r8<1.1.

6. Stellar dilution (imaging). Furlan et al. (2017) compiled
high-resolution imaging observations performed by several
groups. When a nearby star is detected, Furlan et al. (2017)
computed a radius correction factor (RCF), which accounts
for dilution assuming the planet transits the brightest star.
We do not apply this correction factor, but conservatively
exclude KOIs where the RCF exceeds 5%.

7. Planet false positive designation. We excluded candi-
dates that are identified as false positives according
to P17.

8. Planets with grazing transits. We excluded stars having
grazing transits (b> 0.9), which have suspect radii due to
covariances with the planet size and stellar limb-
darkening during the light curve fitting.

After applying these cuts, we are left with 907 planets.
Where possible, we applied the same filters on stellar

properties to the Kepler field star population. For the stellar
radius and temperature filters, we used the Gaia DR2
parameters. We could not apply the imaging cut to the parent
stellar population because it relies on follow-up resources
directed specifically at KOIs not at the parent parent
population. After filtering, 24981 stars remain.
We calculated planet occurrence using the inverse detection

efficiency methodology IDEM of F17. In brief, we account for
the detection sensitivity of the survey using the injection-
recovery tests performed by Christiansen et al. (2015). We
calculated planet occurrence as the number of planets per star
in discrete bins as
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where Nå=24981 and wi is the product of the inverse pipeline
detection efficiency pdet and the inverse transit probability ptr
for each detected planet. Values of wi, pdet, ptr are listed in
Table 4.
Computing these weights requires knowledge of the

distribution of radii and noise properties of stars in the parent
stellar sample. As in F17, we used the Combined Differential
Photometric Precision computed by the Kepler project (Mathur
et al. 2017) as our noise metric. Unlike F17, we used the R�
from Gaia DR2 as opposed to photometric R� to characterize
the distribution of parent stellar radii. F17 found that plausible
statistical and systematic errors of 40% and 25%, respectively,
in the photometric radii of the parent stellar population led to
errors in planet occurrence of up to a factor of two at 1.0RÅ.
Our new occurrence measurements have the major advantage
that there are negligible differences between the radii of the
field stars and planet hosts; thus, our occurrence measurements
are up to twice as precise.
The IDEM has been used in a number of previous works

(e.g., Howard et al. 2010, 2012; Morton & Swift 2014;
Fulton et al. 2017). While our results depend on the relative

Table 4
Planet Detection Statistics

Planet S/N Detection probability Transit probability Weight
candidate mi pdet ptr 1/wi

K00958.01 186.24 0.97 0.02 49.24
K04053.01 21.03 0.77 0.17 7.71
K04212.02 8.77 0.81 0.05 22.85
K04212.01 16.53 0.93 0.08 13.79
K01001.01 37.27 0.99 0.03 32.14
K01001.02 15.49 0.96 0.01 75.81
K02534.01 22.64 0.94 0.11 9.37
K02534.02 11.91 0.84 0.08 15.49
K02403.01 17.98 0.79 0.04 29.89
K00988.01 60.03 0.97 0.04 28.79

Note. This table contains only the subset of planet detections that passed the
filters described in Section 4.

(This table is available in its entirety in machine-readable form.)

Figure 5. The distribution of close-in planet sizes. The top panel shows the
distribution from Fulton et al. (2017) and the bottom panel is the updated
distribution from this work. The solid line shows the number of planets per star
with orbital periods less than 100days as a function of planet size. A deep
trough in the radius distribution separates two populations of planets with
Rp >1.7 RÅ and Rp <1.7RÅ. As a point of reference, the dotted line shows
the size distribution of detected planets, before completeness corrections are
made arbitrarily scaled for visual comparison.
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2What is an occurrence rate?



1The  expected number  of 
planets per star. 



2The  fraction  of stars 
with planets. 



3The  expected number  of 
planets per star 
 per unit planet property . 



4etc.



None of these definitions 
is  inherently better  than 
the others.



But. They are all  different . 



They have different  units . 



They all depend on a 
specific (often unstated) 
 definition of "planets" . 



So. It can be hard to 
compare and understand 
how they relate.



 Them: * "The occurrence 
rate is 10%." 

 Y'all:  "what does it all 
mean?!?1?" 

* including me and others in the room



 Them: * "The occurrence 
rate is 10%." 

 Y'all:  "what does it all 
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4. Isochrone parallax. For each star, we computed an
“isochrone parallax” based on Teff , glog , [Fe/H], and mK

(see Section 3.7). We removed stars where the Gaia and
isochrone parallaxes differed by more than 4σ, due to
likely flux contamination by unresolved binaries.

5. Stellar dilution (Gaia). Dilution from nearby stars can
also alter the apparent planetary radii. For each target, we
queried all Gaia sources within 8arcsec (2 Kepler pixels)
and computed the sum of their G-band fluxes. The ratio
between this cumulative flux and the target flux r8
approximates the Kp-band dilution for each transiting
planet. We required that r8<1.1.

6. Stellar dilution (imaging). Furlan et al. (2017) compiled
high-resolution imaging observations performed by several
groups. When a nearby star is detected, Furlan et al. (2017)
computed a radius correction factor (RCF), which accounts
for dilution assuming the planet transits the brightest star.
We do not apply this correction factor, but conservatively
exclude KOIs where the RCF exceeds 5%.

7. Planet false positive designation. We excluded candi-
dates that are identified as false positives according
to P17.

8. Planets with grazing transits. We excluded stars having
grazing transits (b> 0.9), which have suspect radii due to
covariances with the planet size and stellar limb-
darkening during the light curve fitting.

After applying these cuts, we are left with 907 planets.
Where possible, we applied the same filters on stellar

properties to the Kepler field star population. For the stellar
radius and temperature filters, we used the Gaia DR2
parameters. We could not apply the imaging cut to the parent
stellar population because it relies on follow-up resources
directed specifically at KOIs not at the parent parent
population. After filtering, 24981 stars remain.
We calculated planet occurrence using the inverse detection

efficiency methodology IDEM of F17. In brief, we account for
the detection sensitivity of the survey using the injection-
recovery tests performed by Christiansen et al. (2015). We
calculated planet occurrence as the number of planets per star
in discrete bins as
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where Nå=24981 and wi is the product of the inverse pipeline
detection efficiency pdet and the inverse transit probability ptr
for each detected planet. Values of wi, pdet, ptr are listed in
Table 4.
Computing these weights requires knowledge of the

distribution of radii and noise properties of stars in the parent
stellar sample. As in F17, we used the Combined Differential
Photometric Precision computed by the Kepler project (Mathur
et al. 2017) as our noise metric. Unlike F17, we used the R�
from Gaia DR2 as opposed to photometric R� to characterize
the distribution of parent stellar radii. F17 found that plausible
statistical and systematic errors of 40% and 25%, respectively,
in the photometric radii of the parent stellar population led to
errors in planet occurrence of up to a factor of two at 1.0RÅ.
Our new occurrence measurements have the major advantage
that there are negligible differences between the radii of the
field stars and planet hosts; thus, our occurrence measurements
are up to twice as precise.
The IDEM has been used in a number of previous works

(e.g., Howard et al. 2010, 2012; Morton & Swift 2014;
Fulton et al. 2017). While our results depend on the relative

Table 4
Planet Detection Statistics

Planet S/N Detection probability Transit probability Weight
candidate mi pdet ptr 1/wi

K00958.01 186.24 0.97 0.02 49.24
K04053.01 21.03 0.77 0.17 7.71
K04212.02 8.77 0.81 0.05 22.85
K04212.01 16.53 0.93 0.08 13.79
K01001.01 37.27 0.99 0.03 32.14
K01001.02 15.49 0.96 0.01 75.81
K02534.01 22.64 0.94 0.11 9.37
K02534.02 11.91 0.84 0.08 15.49
K02403.01 17.98 0.79 0.04 29.89
K00988.01 60.03 0.97 0.04 28.79

Note. This table contains only the subset of planet detections that passed the
filters described in Section 4.

(This table is available in its entirety in machine-readable form.)

Figure 5. The distribution of close-in planet sizes. The top panel shows the
distribution from Fulton et al. (2017) and the bottom panel is the updated
distribution from this work. The solid line shows the number of planets per star
with orbital periods less than 100days as a function of planet size. A deep
trough in the radius distribution separates two populations of planets with
Rp >1.7 RÅ and Rp <1.7RÅ. As a point of reference, the dotted line shows
the size distribution of detected planets, before completeness corrections are
made arbitrarily scaled for visual comparison.
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isochrone parallaxes differed by more than 4σ, due to
likely flux contamination by unresolved binaries.

5. Stellar dilution (Gaia). Dilution from nearby stars can
also alter the apparent planetary radii. For each target, we
queried all Gaia sources within 8arcsec (2 Kepler pixels)
and computed the sum of their G-band fluxes. The ratio
between this cumulative flux and the target flux r8
approximates the Kp-band dilution for each transiting
planet. We required that r8<1.1.
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high-resolution imaging observations performed by several
groups. When a nearby star is detected, Furlan et al. (2017)
computed a radius correction factor (RCF), which accounts
for dilution assuming the planet transits the brightest star.
We do not apply this correction factor, but conservatively
exclude KOIs where the RCF exceeds 5%.

7. Planet false positive designation. We excluded candi-
dates that are identified as false positives according
to P17.

8. Planets with grazing transits. We excluded stars having
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where Nå=24981 and wi is the product of the inverse pipeline
detection efficiency pdet and the inverse transit probability ptr
for each detected planet. Values of wi, pdet, ptr are listed in
Table 4.
Computing these weights requires knowledge of the

distribution of radii and noise properties of stars in the parent
stellar sample. As in F17, we used the Combined Differential
Photometric Precision computed by the Kepler project (Mathur
et al. 2017) as our noise metric. Unlike F17, we used the R�
from Gaia DR2 as opposed to photometric R� to characterize
the distribution of parent stellar radii. F17 found that plausible
statistical and systematic errors of 40% and 25%, respectively,
in the photometric radii of the parent stellar population led to
errors in planet occurrence of up to a factor of two at 1.0RÅ.
Our new occurrence measurements have the major advantage
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field stars and planet hosts; thus, our occurrence measurements
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filters described in Section 4.
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Figure 5. The distribution of close-in planet sizes. The top panel shows the
distribution from Fulton et al. (2017) and the bottom panel is the updated
distribution from this work. The solid line shows the number of planets per star
with orbital periods less than 100days as a function of planet size. A deep
trough in the radius distribution separates two populations of planets with
Rp >1.7 RÅ and Rp <1.7RÅ. As a point of reference, the dotted line shows
the size distribution of detected planets, before completeness corrections are
made arbitrarily scaled for visual comparison.
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what do these numbers mean?  

The  expected number  
of planets per star with 
a period in the range 

0–100 days and radius 
 in the given bin .  



Simulations 
github.com/dfm/exostar19

expected number of planets per star



3How to estimate an 
occurrence rate?



Inverse detection efficiency 

Probabilistic modeling 

Approximate Bayesian 
Computation

1

2

3



1Inverse detection efficiency 

Nexpect =
1

Ntot

NX

j=1

1

Pdet(xj)

Note: don't do this!



2Probabilistic modeling 

Nexpect = argmaxNexpect
p(Nobs, {xj} |Nexpect, Ntot)



3Approximate Bayesian 
Computation 



3Approximate Bayesian 
Computation 
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of planets

the properties 
of the planets 
and the star

want have



P(nj | xj, qj)

observed number 
of planets

true number 
of planets
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of the planets 

and the star



Start with either  zero  
or  one  planet(s). 



There are  four  options. 
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But. We don't  know  the 
true number of planets. 



 Marginalize! 



P (nj |xj) =
X

qj2{0, 1}

P (qj)P (nj |xj , qj)

= QP (nj |xj , qj= 1) + (1�Q)P (nj |xj , qj= 0)



P (nj |xj) =
X

qj2{0, 1}

P (qj)P (nj |xj , qj)

= QP (nj |xj , qj= 1) + (1�Q)P (nj |xj , qj= 0)



P (nj |xj) =
X

qj2{0, 1}

P (qj)P (nj |xj , qj)

= QP (nj |xj , qj= 1) + (1�Q)P (nj |xj , qj= 0)

this is the parameter 
that we want to fit for!



But. We don't  know  the 
properties of the 
 unobserved planets . 



 Marginalize! 



P (nj = 1) = p(xj)P (nj = 1 |xj)

= p(xj)QP (nj = 1 |xj , qj= 1)
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Put it all together.

An exercise for the reader…
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see: dfm.io/posts/histogram1



truth: 50 
inverse-detection-efficiency gives: 28.5 ± 5.5 

see: dfm.io/posts/histogram1



truth: 50 
inverse-detection-efficiency gives: 28.5 ± 5.5 

maximum-likelihood gives: 54.0 ± 10.4

see: dfm.io/posts/histogram1



Inverse detection efficiency 
 is not  the right estimator. 



Instead, take the fraction 
of detections and divide 
by the  average  detection 
efficiency*.

* averaged over the correct distribution 
for all planet and star properties



The key ingredient is the 
 detection efficiency  model. 



simultaneously solve for a parameterized completeness model
in addition to planet occurrence (Fressin et al. 2013; Farr et al.
2014; Mulders et al. 2015). Others avoid this shortcoming
altogether through an independent planet search pipeline and
pipeline completeness measurement (Petigura et al.
2013a, 2013b; Dressing & Charbonneau 2015).

Christiansen et al. (2015) rectify this shortcoming by
directly measuring the Kepler pipeline completeness of the
Q1-Q16 Kepler pipeline run (Tenenbaum et al. 2014) through
Monte-Carlo transit injection and recovery tests. In this study,
we make use of the Christiansen et al. (2015) Kepler pipeline
completeness parameterization in order to derive the planet
occurrence rates from the resulting Q1-Q16 Kepler planet
candidate sample of Mullally et al. (2015). Another highlight
of this study is a comprehensive analysis of the systematic
errors present in deriving planet occurrence rates with
Kepler data. As exemplified in Youdin (2011) and Dong &
Zhu (2013), we undertake a sensitivity analysis where we
iteratively change an input assumption and recalculate the
occurrence rates. We investigate the following input assump-
tions: pipeline completeness systematics, orbital eccentricity,
stellar parameter systematics, planet parameter systematics, and
planet sample classification systematics.

This paper is organized as follows. Section 2 describes the
pipeline completeness model that quantifies the survey
completeness for any target observed by Kepler. Sections 3
and 4 summarize the stellar properties and planet sample from
the Q1-Q16 Kepler pipeline run adopted for derivation of the
planet occurrence rates. We extend the analysis techniques of
Youdin (2011) by increasing the complexity of the parameter-
ized model for the planet occurrence rate and employ Markov
Chain Monte-Carlo (MCMC) methods for solving the para-
meter estimation problem in Section 5. Section 6.1 presents
results for the planet occurrence rate using a baseline set of
inputs, and we thoroughly explore the systematic errors in this
result through a sensitivity analysis in Section 6.2. We compare
the occurrence rate analysis with previous efforts in Section 7.
We apply the resulting occurrence rates to determine the
occurrence rate for terrestrial planets with an orbital period
equivalent to Venus in Section 9 as well as extrapolating these
results toward longer periods (Section 8) in order to measure a
one year terrestrial planet occurrence rate in Section 10.
Finally, Section 11 summarizes the future work necessary to
improve the accuracy for the resulting planet occurrence rates.

2. KEPLER PIPELINE COMPLETENESS MODEL

This section details an analytic star-by-star model for the
Kepler pipeline completeness. A critical component for model-
ing the completeness of Kepler observations is simulating
the performance of the TPS pipeline module which is
responsible for characterizing the noise present in a light curve
and detection of the transit signals (Jenkins 2002; Tenenbaum
et al. 2012, 2013, 2014). The performance of a transit survey can
be fully specified with intensive, end-to-end Monte Carlo signal
injection and recovery tests (Weldrake & Sackett 2005; Burke
et al. 2006; Hartman et al. 2009; Christiansen et al. 2013; Seader
et al. 2014). Unfortunately, due to their numerically intensive
nature, Monte-Carlo injection tests are not amenable to a
systematic sensitivity analysis, and the tests are limited to the
subset of targets that one performs the analysis upon. Therefore,
we present a simplified analytic model for the Kepler pipeline
that can be readily applied to any observed Kepler target using a

minimum of input data. Fortunately, the joint noise character-
ization, filtering, and detection properties of TPS were designed
to facilitate a well defined and tested detector response for transit
signals even in the presence of astrophysical broadband or red
noise (Jenkins 2002). Given the well defined properties of the
TPS detector, our analytic completeness model can achieve high
fidelity after it is calibrated with Monte-Carlo injection tests. For
a single target, we parameterize the pipeline completeness over a
two-dimensional (2D) grid of orbital period, Porb , and planet
radius, Rp .

2.1. Multiple Event Statistic (MES) Estimation

Modeling pipeline completeness requires modeling the
statistical behavior of TPS and its response to noise in the
presence of a signal (Jenkins 2002; Seader et al. 2013). In the
presence of broadband red noise, TPS considers the so-called
MES to measure the strength of a potential transit signal. In the
null hypothesis case of no signal present, the MES distribution
is Gaussian with an average of zero and unit variance. In the
alternative hypothesis case for the presence of a signal, the
MES distribution is Gaussian but the average MES is shifted
proportional to the S/N of the transit signal. The first step for
modeling pipeline completeness is to estimate the expected
MES of a transit signal for a specified Porb and Rp . This requires
an estimate of the expected transit duration,

�t =
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ø
÷÷÷÷
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P R
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1 day
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orb 2

where e is the orbital eccentricity, and the stellar radius, �R , and
orbital semimajor axis, a, are in a consistent set of units. In
Equation (1), we assume Rp � �R , shorten the transit duration
from the central crossing time by a factor of p 4 for its
expectation assuming a uniform distribution of icos for the
orbital inclination (Gilliland et al. 2000; Seager & Mallén-
Ornelas 2003), and include the expected dependence on the
transit duration with e (Burke 2008). We explore the sensitivity
of our results to >e 0 in Section 6.2.2.
Next, we determine the noise present in the light curve

data averaged over the transit duration of interest. TPS

Figure 1. Fractional completeness model for the host to Kepler-22b (KIC:
10593626) in the Q1-Q16 pipeline run using the analytic model described in
Section 2.

2

The Astrophysical Journal, 809:8 (19pp), 2015 August 10 Burke et al.

Burke, Christiansen et al. (2015)



 Remember : an occurrence 
rate depends on a lot of 
decisions! 



Stellar sample 

Range of planet parameters 

Units 

Planet multiplicity

1

2

3

4



4Complications



Multiplicity 

Uncertainties 

False positives 

Heterogeneous catalogs

1

2

3

(planetary and stellar)

4



You end up needing to do 
 an integral  over all the 
properties of all the planets 
and false positives that 
 you didn't observe . 



1Mathematica™  can't  
do that integral. 



2Eric Agol  can't  
do that integral. 



3MCMC  can't  
do that integral*. 

* in finite time.



This is where you use 
approximate Bayesian 
computation (ABC). 



This is where you use 
approximate Bayesian 
computation (ABC). 
likelihood-free inference. 



Likelihood-free inference 
is a method for doing 
 rigorous inference  with 
 stochastic models . 



If you can  simulate it  
then you can do inference. 

a realistic catalog

The promise of "likelihood-free inference".
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Figure 2. Inferred occurrence rates for Kepler’s DR25 planet candidates associated with high-quality FGK target stars. These rares are based
on a combined detection and vetting efficiency model that was fit to flux-level planet injection tests. The numerical values of the occurrence
rates are stated as percentage (i.e. 10-2). The color coding of each cell is based on (d2 f )/[d(lnRp) d(lnP)], which provides an occurrence rate
normalized to the width of the bin and therefore is not dependent on choice of grid density. The uncertainties shown are the differences between
the median and either the 15.87th or 84.13th percentile (whichever has the larger absolute difference). Cells colored gray have estimated upper
limits for the occurrence rate. Note that the bin sizes are not constant.

since the vast majority of stars excluded were not FGK main-
sequence stars for which Kepler had significant sensitivity to
small planets in or near the habitable zone. Our selection cri-
terion intentionally exclude M stars, which will be the subject
of a future study.

The Kepler DR25 pipeline and robovetter identified 2,524
planet candidates associated with these targets with P = 0.5 -
500d and Rp = 0.5 - 16R�. One noticeable change from our
previous study is the relatively few planet candidates in the
⌘� regime. The primary cause for this change is the usage of
updated stellar radii from Gaia, which are often larger than
the previously determined Kepler stellar radii. This trend
tends to boost the inferred planet radii. As a result, the ma-
jority of long period, small radii planet candidates shifted to
larger radii bins within the period-radius grid once we incor-
porated Gaia stellar radii. For example, the inferred radius
KOI 7016.01(Jenkins et al. 2015; Mullally et al. 2018, also
known as Kepler-452 b) reported in DR25 is 1.06+0.2

-0.1 R�, but
incorporating the updated stellar radii from Gaia DR results
in the estimated radius increasing to 1.51 R� (with uncer-
tainties increasing proportionally). While the best-estimate
for the planetary radius no longer falls within the 1-1.25 R�

bin, the uncertainty in the radius of such planets results in it
to contributing to the estimated occurrence rate.

In order to explore which ⌘� regime planet candidates
were removed due to our stellar cuts (as opposed to updated
stellar radii), we created a separate target list where we re-
lax the two stellar cuts which most significantly reduced the
number of stars in our sample: the FGK luminosity cut and
the cuts designed to remove suspected binaries. This cata-
log has a total number of 139,232 target stars, with 3,170
planet candidates within the limits of the period-radius grid.
Most significantly, we recover two long-period, small radius
planet candidates (associated with targets KIC 5097856 and
5098334) in the P = 256-500d, Rp = 1.25-1.5R� bin. After
investigating the properties of these two planet candidates,
we determined that the candidates were not in our final cata-
log because their associated target stars had poor astrometric
GOF which suggests that their host star is likely part of an un-
resolved binary. If true, then the unmodeled flux from the bi-
nary companion would be diluting the transit depth, causing
the true planet radius to be larger than currently estimated.

Hsu et al. (2019)



There's still lots to do! 



EPOS; Mulders et al. (2018)

evaluate the survey as a whole, and do not consider
dependencies on stellar properties such as stellar mass
(Mulders et al. 2015a, 2015b) or metallicity (Mulders
et al. 2016; Petigura et al. 2018).

In occurrence rate mode, the summary statistics are the
planet radius distribution, {R}d, the orbital period distribution,
{P}d, and the total number of planets, N. In multi-planet mode,
additional summary statistics are calculated for the number of
stars with k planets, Nk, the period ratio distribution between
adjacent planets, ( , and the period of the innermost planet in
the system, Pin. We evaluate this summary statistic in the range
of R=[0.5, 6]R⊕ and P=[2, 400] days. These ranges
exclude two regions where the assumptions of separability of
parameters clearly breaks down. The maximum planet size of
6 R⊕ is chosen to exclude giant planets, which have a different
distribution of orbital periods than sub-Neptunes (Dong &
Zhu 2013; Santerne et al. 2016), are less often part of multi-
planet systems (Steffen et al. 2012), or have dissimilar sizes
than other planets in the system (Huang et al. 2016). The
minimum orbital period of two days is chosen to exclude the
photo-evaporation desert (e.g., Lundkvist et al. 2016) where
the planet radius distribution deviates significantly from that at
larger orbital periods. The other bounds are chosen because
there are very few planet detections outside this range.

We then generate a summary statistic from the Kepler DR25
catalog. The planet candidate list is taken from Thompson et al.
(2018). We include only the main-sequence planet hosts by
removing giant and sub-giant stars according to the effective
temperature dependent surface gravity criterion (in Huber
et al. 2016). We also use a disposition score cut of 0.9 to select
a more reliable sample of planet candidates (see Thompson
et al. 2018 for details). We account for the lower completeness
of this high-reliability planet sample by explicitly taking into
account the vetting completeness in the calculation of the
survey detection efficiency.

The final list containing 3041 planet candidates is shown in
Figure 9. The list contains 1840 observed single systems and
324 double, 113 triple, 38 quadruple, 10 quintuples, and two
sextuple systems within the region where the summary statistic
is evaluated.

2.4.1. Occurrence Rate Mode

Figure 10 shows how the summary statistics of planet radius
and orbital period are generated from the detectable planet
population (blue) and from the Keplerexoplanet population
(orange). We compare the planet radius distributions and
orbital period distributions separately. While this approach
ignores any covariances between planet radius and orbital
period that are present in the Keplerdata, it is consistent with
the assumption made in Equation (1) that these functions are
separable. We quantify the distance between the two distribu-
tions using the two-sample Kolmogorov–Smirnoff (KS) test
and calculated the associated probabilities, pP and pR, that the
observed and simulated distributions are drawn from the same
data. We will minimize the differences between these
distributions in the fitting step.

Figure 9. Observed sample of planetary systems. Planets with no additional
planets detected in the system are color coded in gray. Colors indicate the
number of observed planets per system.

Figure 10. Comparison of simulated planets for the example model (blue) with
detected planets (orange). The comparison region (black box) excludes hot
Neptunes (P<2 days) and giant planets (R>6 R⊕).

Figure 11. Simulated vs. observed frequency of multi-planet systems. The blue
histogram shows the example model with an average mutual inclination of
Δi=2. Multi-planet statistics from Kepler derived in the same radius and
period range are shown in orange. The hatched region indicates the excess of
single transiting planets, here 40% of systems ( fiso=0.4). Crosses indicate a
population of planetary systems on coplanar orbits (green, Δi=0) and on
isotropic orbits (red, fiso=1.0).
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evaluate the survey as a whole, and do not consider
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the planet radius distribution deviates significantly from that at
larger orbital periods. The other bounds are chosen because
there are very few planet detections outside this range.
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catalog. The planet candidate list is taken from Thompson et al.
(2018). We include only the main-sequence planet hosts by
removing giant and sub-giant stars according to the effective
temperature dependent surface gravity criterion (in Huber
et al. 2016). We also use a disposition score cut of 0.9 to select
a more reliable sample of planet candidates (see Thompson
et al. 2018 for details). We account for the lower completeness
of this high-reliability planet sample by explicitly taking into
account the vetting completeness in the calculation of the
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The final list containing 3041 planet candidates is shown in
Figure 9. The list contains 1840 observed single systems and
324 double, 113 triple, 38 quadruple, 10 quintuples, and two
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Figure 10 shows how the summary statistics of planet radius
and orbital period are generated from the detectable planet
population (blue) and from the Keplerexoplanet population
(orange). We compare the planet radius distributions and
orbital period distributions separately. While this approach
ignores any covariances between planet radius and orbital
period that are present in the Keplerdata, it is consistent with
the assumption made in Equation (1) that these functions are
separable. We quantify the distance between the two distribu-
tions using the two-sample Kolmogorov–Smirnoff (KS) test
and calculated the associated probabilities, pP and pR, that the
observed and simulated distributions are drawn from the same
data. We will minimize the differences between these
distributions in the fitting step.
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Neptunes (P<2 days) and giant planets (R>6 R⊕).
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Δi=2. Multi-planet statistics from Kepler derived in the same radius and
period range are shown in orange. The hatched region indicates the excess of
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5Take homes



An occurrence rate needs 
to come with  a lot  of 
metadata. 



Comparing occurrence rates: 

Check the  units . 

Check the  parameter ranges . 



 Don't  sum the inverse 
detection probabilities 
for your planets! 

* a more reliable estimator is just as easy to compute!



If you're using a method 
that  seems intuitive , make 
sure  the math checks out ! 



 Likelihood-free inference  
seems like a promising 
way forward. 

* a.k.a. Approximate Bayesian Computation (ABC)



 It's over.  



 Extras.  
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log p({nj}, {xj} |Q) = N0 log (1�QP0) +N1 logQ+ constant



log p({nj}, {xj} |Q) = N0 log (1�QP0) +N1 logQ+ constant
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Simulations 
github.com/dfm/exostar19

"truth" 
fraction of stars 
with planets

expected number 
of planets per star



Note: this is preliminary & really just a toy…

assuming: 
no mutual inclination 
only geometric transit probability

0.5 < RP/REarth < 8; 10 < a/Rstar < 30  
Kepler data: 

github.com/dfm/exostar19



0.5 < RP/REarth < 8; 10 < a/Rstar < 30  
Kepler data: 

github.com/dfm/exostar19

Note: this is preliminary & really just a toy…

assuming: 
no mutual inclination 
only geometric transit probability


