Exoplanet Population Inference

A Tutorial

Dan Foreman-Mackey
CCA@Flatiron // dfm.io

Today I'Il mostly talk about transiting exoplanets*.

The methods can apply
 more broadly.

* this is what I know about and work on!

Exoplanet population inference

data: NASA Exoplanet Archive

Burke, Christiansen et al. (2015)

Take these catalogs and get the physics of planet formation and evolution.

That's hard.

data: NASA Exoplanet Archive

Fulton \& Petigura (2018)

What is an occurrence rate?

The expected number of planets per star.

The fraction of stars with planets.

The expected number of planets per star per unit planet property.

etc.

None of these definitions
 is inherently better than the others.

But. They are all different.

They have different units.

They all depend on a specific (often unstated)
 definition of "planets".

So. It can be hard to compare and understand how they relate.

Them: * "The occurrence rate is 10\%."

Them: * "The occurrence rate is 10\%."

Yall: "what does it all mean?!?1?"

* including me and others in the room

Fulton \& Petigura (2018)

what do these numbers mean?

Fulton \& Petigura (2018)

what do these numbers mean?

Simulations
github.com/dfm/exostar19

How to estimate an occurrence rate?

Inverse detection efficiency

(2) Probabilistic modeling

3 Approximate Bayesian Computation

Inverse detection efficiency

$$
N_{\text {expect }}=\frac{1}{N_{\text {tot }}} \sum_{j=1}^{N} \frac{1}{P_{\mathrm{det}}\left(x_{j}\right)}
$$

Note: don't do this!

Probabilistic modeling

$$
N_{\text {expect }}=\arg \max _{N_{\text {expect }}} p\left(N_{\text {obs }},\left\{x_{j}\right\} \mid N_{\text {expect }}, N_{\text {tot }}\right)
$$

Approximate Bayesian Computation

Approximate Bayesian Computation

Inverse detection efficiency

(2) Probabilistic modeling

3 Approximate Bayesian Computation
(1) Inverse detection efficiency u
(2) Probabilistic modeling

II

(3) Approximate Bayesian Computation
(1) Inverse detection efficiency u
(2) Probabilistic modeling

II

(3) Approximate Bayesian Computation

$\mathbf{P}\left(q_{0}\right)_{\text {turenumber }}$ of planets

observed
 the properties
 of the planets
 and the star

$$
\begin{aligned}
& \text { observed number true number } \\
& \text { of planets } \\
& \text { of planets } \\
& \text { the properties } \\
& \text { of the planets } \\
& \text { and the star }
\end{aligned}
$$

Start with either zero
 or one planet(s).

There are four options.

true number of planets

$q_{j}=0$
 1
 1-Pdet $\left(x_{j}\right)$

$\mathbf{P}_{\text {det }}\left(\mathrm{X}_{\mathrm{j}}\right)$
value of $\mathbf{P}\left(n_{j} \mid x_{j}, q_{j}\right)$

But. We don't Know the true number of planets.

Marginalize!

$$
P\left(n_{j} \mid x_{j}\right)=\sum_{q_{j} \in\{0,1\}} P\left(q_{j}\right) P\left(n_{j} \mid x_{j}, q_{j}\right)
$$

$$
\begin{aligned}
P\left(n_{j} \mid x_{j}\right) & =\sum_{q_{j} \in\{0,1\}} P\left(q_{j}\right) P\left(n_{j} \mid x_{j}, q_{j}\right) \\
& =Q P\left(n_{j} \mid x_{j}, q_{j}=1\right)+(1-Q) P\left(n_{j} \mid x_{j}, q_{j}=0\right)
\end{aligned}
$$

$$
\begin{aligned}
P\left(n_{j} \mid x_{j}\right)= & \sum_{q_{j} \in\{0,1\}} P\left(q_{j}\right) P\left(n_{j} \mid x_{j}, q_{j}\right) \\
= & Q P\left(n_{j} \mid x_{j}, q_{j}=1\right)+(1-Q) P\left(n_{j} \mid x_{j}, q_{j}=0\right) \\
& \underbrace{}_{\text {this is the parameter }} \begin{array}{l}
\text { that we want to fit for! }
\end{array}
\end{aligned}
$$

But. We don't know the properties of the unobserved planets.

Marginalize!
systems with

$$
\begin{aligned}
P\left(n_{j}=0\right) & =\int p\left(x_{j}\right) P\left(n_{j}=0 \mid x_{j}\right) \mathrm{d} x_{j} \\
& =1-Q \int p\left(x_{j}\right) P\left(n_{j}=1 \mid x_{j}, q_{j}=1\right) \mathrm{d} x_{j} \\
& =1-Q P_{0}
\end{aligned}
$$

systems with
detected planets

$$
\begin{aligned}
P\left(n_{j}=1\right) & =p\left(x_{j}\right) P\left(n_{j}=1 \mid x_{j}\right) \\
& =p\left(x_{j}\right) Q P\left(n_{j}=1 \mid x_{j}, q_{j}=1\right)
\end{aligned}
$$

systems with
$P\left(n_{j}=0\right)=\int p\left(x_{j}\right) P\left(n_{j}=0 \mid x_{j}\right) \mathrm{d} x_{j}$

$$
\begin{aligned}
& =1-Q \int p\left(x_{j}\right) P\left(n_{j}=1 \mid x_{j}, q_{j}=1\right) \mathrm{d} x_{j} \\
& =1-Q P_{0}
\end{aligned}
$$

detection
systems with
detected planets

$$
\begin{aligned}
P\left(n_{j}=1\right) & =p\left(x_{j}\right) P\left(n_{j}=1 \mid x_{j}\right) \\
& =p\left(x_{j}\right) Q P\left(n_{j}=1 \mid x_{j}, q_{j}=1\right)
\end{aligned}
$$

Put it all together.

> the fraction
> of stars with
> observed planets

occurrence rate

$$
\begin{gathered}
\text { the fraction } \\
\text { of stars with } \\
\text { observed planets }
\end{gathered}
$$

$$
\begin{aligned}
& \text { moseme } \\
& \text {, itars wint } \\
& \text { obsered pimases } \\
& Q=\frac{N_{1}}{N_{0}+N_{1}} \frac{1}{P_{0}} \neq \frac{1}{N_{0}+N_{1}} \sum_{j=1}^{N_{1}} \frac{1}{P_{j}}
\end{aligned}
$$

see: dfm.io/posts/histogram1

see: dfm.io/posts/histogram1

see: dfm.io/posts/histogram1

Inverse detection efficiency is not the right estimator.

Instead, take the fraction of detections and divide by the average detection efficiency*.

The key ingredient is the detection efficiency model.

Burke, Christiansen et al. (2015)

Remember: an occurrence rate depends on a lot of decisions!

Stellar sample

Range of planet parameters

3 Units
. Planet multiplicity

Complications

2
 Uncertainties

3. False positives

Heterogeneous catalogs

You end up needing to do an integral over all the properties of all the planets and false positives that you didn't observe.

Mathematica ${ }^{\text {TM }}$ can't do that integral.

Eric Agol can't do that integral.

MCMC can't do that integral*.

\author{

* in finite time.
}

This is where you use approximate Bayesian computation (ABC).

This is where you use

approximate Bayesian computation (ABC). likelihood-free inference.

Likelihood-free inference

 is a method for doingrigorous inference with
stochastic models.
a realistic catalog

If you can simulate it then you can do inference.

The promise of "likelihood-free inference".

Hsu et al. (2019)

There's still lots to do!

Simulated Detections

EPOS; Mulders et al. (2018)

Simulated Detections

EPOS; Mulders et al. (2018)

Take homes

An occurrence rate needs to come with a lot of metadata.

Comparing occurrence rates:

Check the units.
Check the parameter ranges.

Don't sum the inverse detection probabilities for your planets!

* a more reliable estimator is just as easy to compute!

If you're using a method that seems inturive, make sure the math checks out!

Likelihood-free inference seems like a promising way forward.

* a.k.a. Approximate Bayesian Computation (ABC)

[t's over.

Extras.

$$
p\left(\left\{n_{j}\right\},\left\{x_{j}\right\} \mid Q\right)=\left[1-Q P_{0}\right]^{N_{0}}\left[\prod_{j=1}^{N_{1}} Q p\left(x_{j}\right) P\left(n_{j}=1 \mid x_{j}, q_{j}=1\right)\right]
$$

$\log p\left(\left\{n_{j}\right\},\left\{x_{j}\right\} \mid Q\right)=N_{0} \log \left(1-Q P_{0}\right)+N_{1} \log Q+$ constant
$\log p\left(\left\{n_{j}\right\},\left\{x_{j}\right\} \mid Q\right)=N_{0} \log \left(1-Q P_{0}\right)+N_{1} \log Q+$ constant

$$
Q=\frac{\downarrow}{N_{0}+N_{1}} \frac{1}{P_{0}}
$$

Simulations
github.com/dfm/exostar19

Note: this is preliminary \& really just a toy...

assuming:
no mutual inclination
only geometric transit probability

$$
\begin{array}{r}
0.5<R_{P} / R_{\text {Earth }}<8 ; 10<a / R_{\text {star }}<30 \\
\text { Kepler data: } \\
\text { github.com } / \text { dfm } / \text { exostar19 }
\end{array}
$$

Note: this is preliminary \& really just a toy...

assuming:
no mutual inclination
only geometric transit probability
$0.5<R_{P} / R_{\text {Earth }}<8 ; 10<a / R_{\text {star }}<30$
Kepler data:
github.com/dfm/exostar19

