Data-driven Planetary Radii

(and masses, with implications for composition)

> Angie Wolfgang
> Pennsylvania State University Assistant Research Professor

Eric Ford, Daniel Jontof-Hutter, Leslie Rogers, Eric Lopez, Jonathan Fortney, Bo Ning, Sujit Ghosh, Shubham Kanodia, Jennifer Burt, Johanna Teske, Sharon Wang

Exoplanets: Strength in Numbers

The Current Detections

Obtaining the true exoplanet census is a significant endeavor; must account for different stellar samples, probability of detection, large measurement uncertainties!

Data is inherently probabilistic

.. so our analysis methodology should be too.
Probabilistic Exoplanet Demographics

Data is inherently probabilistic

 .. so our analysis methodology should be too.Probabilistic Exoplanet Demographics

Population
Parameters
($\mathrm{dN} / \mathrm{d} M \sim \mathrm{M}^{\alpha}$)
Individual
Parameters
($\left.R_{p}, M_{p}, a\right)$
Observables
$(\delta, \mathrm{K}, \mathrm{q} \& \mathrm{~s}, \Delta \theta)$

Data is inherently probabilistic

.. so our analysis methodology should be too.
Probabilistic Exoplanet Demographics

Population
Parameters
($\mathrm{dN} / \mathrm{dM} \sim \mathrm{M}^{\alpha}$)
Individual
Parameters
($\mathrm{R}_{\mathrm{p}}, \mathrm{M}_{\mathrm{p}}, \mathrm{a}$)
Observables
$(\delta, \mathrm{K}, \mathrm{q} \& \mathrm{~s}, \Delta \theta)$

Data is inherently probabilistic

.. so our analysis methodology should be too.
Probabilistic Exoplanet Demographics

Population Parameters ($\mathrm{dN} / \mathrm{dM} \sim \mathrm{M}^{\alpha}$)

Individual
Parameters
($\mathrm{R}_{\mathrm{p}}, \mathrm{M}_{\mathrm{p}}, \mathrm{a}$)
Observables
$(\delta, \mathrm{K}, \mathrm{q} \& \mathrm{~s}, \Delta \theta)$

Uncertainty in stellar properties adds to uncertainty in parameters! This analysis produces error bars that are self-consistent.

Close-in planetary radii (c. 20I3)

What are their compositions?

What are their compositions?

Compositions just from radius

Compositions just from radius

Compositions just from radius

Compositions just from radius

1.0
1.5
2.0
2.5
3.0
3.5
Rocky
Compositions are uncertain on an individual planet basis (driven by $R \star$ uncertainties). ... but well constrained in a population sense

... but these results are model-dependent!
0.1
10
C

Data-driven compositions

Wolfgang, Rogers, \& Ford, 2016

The M-R relation is an empirical description of exoplanet composition distribution.

Data-driven compositions

Wolfgang, Rogers, \& Ford, 2016

The M-R relation is an empirical description of exoplanet composition distribution.

Probabilistic relations allow for a distribution of masses at a given radius as motivated by observations and theory

Data-driven compositions

Wolfgang, Rogers, \& Ford, 2016

The M-R relation is an empirical description of exoplanet composition distribution.

Probabilistic relations allow for a distribution of masses at a given radius as motivated by observations and theory

Can distinguish between scatter due to measurement uncertainty and astrophysical scatter in the planet population

Data-driven compositions

Wolfgang, Rogers, \& Ford, 2016

The M-R relation is an empirical description of exoplanet composition distribution.

Probabilistic relations allow for a distribution of masses at a given radius as motivated by observations and theory

Can distinguish between scatter due to measurement uncertainty and astrophysical scatter in the planet population

Next-gen M-R: Beyond the Power-Law

Go nonparametric!! (Ning,Wolfgang \& Ghosh, 2018)
I) Define the joint distribution $f(m, r)$ as mixture of basis functions

2) Fit mixture coefficients w to data, then calculate conditional $\mathrm{f}(\mathrm{m} \mid \mathrm{r})$

$$
E[M \mid R=r]=\frac{\int m f(m, r) d m}{\int f(m, r) d m}
$$

M-R Relation from Kepler

See this gap in radius distribution:

New Predictions for Mass:

New Predictions for Mass:

New Predictions for Mass:

As a function of $T_{\text {eff }}$ (M-dwarfs)

Kanodia,Wolfgang+, in review; arXiv: 1903.00042

As a function of $T_{\text {eff }}$ (M-dwarfs)

Kanodia,Wolfgang+, in review; arXiv: 1903.00042

Masses (and therefore compositions) for 3 Rearth planets are similar for both host star samples ...

As a function of $T_{\text {eff }}$ (M-dwarfs)

Kanodia,Wolfgang+, in review; arXiv: 1903.00042

Masses (and therefore compositions) for 3 Rearth planets are similar for both host star samples ...

But masses for I and $10 R_{\text {Earth }}$ planets are lower for smaller stars!

As a function of $T_{\text {eff }}$ (M-dwarfs)

Kanodia,Wolfgang+, in review; arXiv: 1903.00042

Masses (and therefore compositions) for 3 Rearth planets are similar for both host star samples ...

But masses for I and $10 R_{\text {Earth }}$ planets are lower for smaller stars!

Perhaps super-Earth formation is insensitive to total mass of disk, but giant \& terrestrial planet formation is not?

As a function of $T_{\text {eff }}$ (M-dwarfs)

Kanodia,Wolfgang+, in review; arXiv:I903.00042
M dwarf
Nonparametric
... but some major biases exist!! (Burt, Holden,Wolfgang+, 2018)

Mitigating these biases with careful follow-up of TESS planets with PFS (PI:Teske; Co-l:Wang,Wolfgang)

> M dwarf
> Parametric

Masses (and therefore compositions) for 3 Rearth planets are similar for both host star samples ...

But masses for I and $10 R_{\text {Earth }}$ planets are lower for smaller stars!

Perhaps super-Earth formation is insensitive to total mass of disk, but giant \& terrestrial planet formation is not?

Numerous Future Directions

Summary

Observations of planet populations are inherently probabilistic; our analysis of planet demographics should be too.

Composition distribution of Kepler's sub-Neptunes:
the typical $\mathrm{I}<\mathrm{R}_{\text {Earth }}<4$ planet has $\sim 1 \%$ mass in $\mathrm{H}+$ He envelope;
95\% have envelope fractions between 0.1\% and I0 \%

The mass-radius relation has astrophysical scatter, so that there's a range of possible masses at a given radius. The average mass can be modeled as a power law for smaller radi.

The Galactic exoplanet census will provide numerous and valuable constraints on planet formation. Constructing it requires expertise in astrostatistics and many Ph.D.s worth of research.

