Data-driven Planetary Radii (and masses, with implications for composition)

Angie Wolfgang Pennsylvania State University Assistant Research Professor

Eric Ford, Daniel Jontof-Hutter, Leslie Rogers, Eric Lopez, Jonathan Fortney, Bo Ning, Sujit Ghosh, Shubham Kanodia, Jennifer Burt, Johanna Teske, Sharon Wang

Exoplanets: Strength in Numbers

Data is inherently probabilistic .. so our analysis methodology should be too. Probabilistic Exoplanet Demographics

Individual Parameters (R_P, M_P, a)

Observables $(\delta, K, q \& s, \Delta \theta)$

Data is inherently probabilistic

.. so our analysis methodology should be too.

Probabilistic Exoplanet Demographics

Population Parameters (dN/dM ~ M^α)

Individual Parameters (R_P, M_P, a)

Observables $(\delta, K, q \& s, \Delta \theta)$

Data is inherently probabilistic

.. so our analysis methodology should be too.

Probabilistic Exoplanet Demographics

Population Parameters $(dN/dM \sim M^{\alpha})$

Individual Parameters (R_P, M_P, a)

Observables $(\delta, K, q \& s, \Delta \theta)$

Uncertainty in stellar properties adds to uncertainty in parameters! This analysis produces error bars that are self-consistent.

Close-in planetary radii (c. 2013)

What are their compositions?

What are their compositions?

Wolfgang, Rogers, & Ford, 2016

The M-R relation is an empirical description of exoplanet composition distribution.

The M-R relation is an empirical description of exoplanet composition distribution.

Probabilistic relations allow for a distribution of masses at a given radius as motivated by observations and theory

The M-R relation is an empirical description of exoplanet composition distribution.

Probabilistic relations allow for a distribution of masses at a given radius as motivated by observations and theory

Can distinguish between scatter due to measurement uncertainty and astrophysical scatter in the planet population

The M-R relation is an empirical description of exoplanet composition distribution.

Probabilistic relations allow for a distribution of masses at a given radius as motivated by observations and theory

Can distinguish between scatter due to measurement uncertainty and astrophysical scatter in the planet population

Next-gen M-R: Beyond the Power-Law Go nonparametric!! (Ning, Wolfgang & Ghosh, 2018)

I) Define the joint distribution f(m,r) as mixture of basis functions

$$E[M|R=r] = \frac{\int mf(m,r)dm}{\int f(m,r)dm}$$

$$f(m,r|\boldsymbol{w}) = \sum_{k=1}^{N} \sum_{l=1}^{N} w_{kl} \frac{B_k(m/M_{\max}^{\circ})}{M_{\max}^{\circ}} \frac{B_l(r/R_{\max}^{\circ})}{R_{\max}^{\circ}}$$

$$B_j(a/A_{\max}) = N\binom{N-1}{j-1} (a/A_{\max})^{j-1} (1 - a/A_{\max})^{N-j}$$

See this gap in radius distribution:

New Predictions for Mass:

New Predictions for Mass:

New Predictions for Mass:

Kanodia, Wolfgang+, in review; arXiv:1903.00042

Kanodia, Wolfgang+, in review; arXiv:1903.00042

Masses (and therefore compositions) for 3 R_{Earth} planets are similar for both host star samples ...

Kanodia, Wolfgang+, in review; arXiv:1903.00042

Masses (and therefore compositions) for 3 R_{Earth} planets are similar for both host star samples ...

But masses for I and IO R_{Earth} planets are lower for smaller stars!

Kanodia, Wolfgang+, in review; arXiv:1903.00042

Masses (and therefore compositions) for 3 R_{Earth} planets are similar for both host star samples ...

But masses for I and IO R_{Earth} planets are lower for smaller stars!

Perhaps super-Earth formation is insensitive to total mass of disk, but giant & terrestrial planet formation is not?

Kanodia, Wolfgang+, in review; arXiv:1903.00042

Masses (and therefore compositions) for 3 R_{Earth} planets are similar for both host star samples ...

But masses for I and IO R_{Earth} planets are lower for smaller stars!

Perhaps super-Earth formation is insensitive to total mass of disk, but giant & terrestrial planet formation is not?

Numerous Future Directions

10	0000				a da sa a ta da sa	
•	1000	• Transits + F What is the co What was the	RVs + mo ore mass ir initial co	dels of photo distribution of omposition dist	evaporat sub-Neptu tribution?	i on: ines?
M _p [M _{earth}]	100	• Transits + microlensing: Is there really a dearth of Earth-sized/mass planets at 1 AU? How does this scale with stellar mass?				
	10	• Microlensing + direct imaging: Are distant gas giants really not there? How is planet formation influenced by galactic environment?				
	1	• RV/transits/direct imaging + stellar abundances: Can the stars help predict properties of planets?				
	0.1	0.1	1 4	10 a [AU]	100	figure courtesy of Rachel Street

Summary

Observations of planet populations are inherently probabilistic; our analysis of planet demographics should be too.

Composition distribution of Kepler's sub-Neptunes: the typical I < R_{Earth} < 4 planet has ~1% mass in H+He envelope; 95% have envelope fractions between 0.1% and 10 %

The mass-radius relation has astrophysical scatter, so that there's a range of possible masses at a given radius. The average mass can be modeled as a power law for smaller radii.

The Galactic exoplanet census will provide numerous and valuable constraints on planet formation. Constructing it requires expertise in astrostatistics and many Ph.D.s worth of research.