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Exoplanets: Strength in Numbers

Transits (Rp)

Microlensing
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Obtaining the true exoplanet census is a
significant endeavor; must account for
different stellar samples, probability of

detection, large measurement
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Data is inherently probabilistic

.. S0 our analysis methodology should be too.

Probabilistic Exoplanet Demographics
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Data is inherently probabilistic

.. S0 our analysis methodology should be too.
Probabilistic Exoplanet Demographics

Population

Parameters
Expand your (dN/dM _ Mo()
likelihood!

Individual

Parameters
Likelihood (MCMC) (Rp, Mp, a)

C o6 )

( data ) Observables Wolfgang & (& )
(6, K, g & s, Ae) Lopez, 2015

Uncertainty in stellar properties adds to uncertainty in parameters!
This analysis produces error bars that are self-consistent.




Close-in planetary radii (c.2013)
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What are their compositions!?
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Model composition from mass & radius:
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What are their compositions!?

What can you mfer based just on radlus7
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Compositions just from radius

Compositions are uncertain on
an individual planet basis

| (driven by Rx uncertainties).

Incident Flux (Fgarin)

QO
T
+
T
=
.
)
48]
=
B

1

| | |

2.0 2.5 3.0 3.5 4.0
Radius (Reartn) Wolfgang & Lopez, 2015




Compositions just from radius
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Data-driven compositions

The M-R relation is a

empirical description
inE of exopl.a!wet
) J( composition
distribution.

Wolfgang, Rogers, & Ford, 2016
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Data-driven compositions
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Data-driven compositions
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Data-driven compositions

The M-R relation is a
empirical description
of exoplanet
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Next-gen M-R: Beyond the Power-Law
Go nonparametric!! (Ning,Wolfgang & Ghosh, 201 8)

|) Define the joint distribution f(m,r) as mixture of basis functions

N N . ]
Flmi) = 373w P ) P )

k=1 I=1 max max

¥
Weight value

2) Fit mixture coefficients w to data,
then calculate conditional f(m|r)

345678 91011121314151617
Weight index (Radius)




M-R Relation from Kepler

Ning, Wolfgang & Ghosh, 2018
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M-R Relation from Kepler

Ning, Wolfgang & Ghosh, 2018

For the smaller planets, a power
law is not a bad assumption.

But for the entire dataset, what
functional form would you usg!?
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M-R Relation from Kepler

Ning, Wolfgang & Ghosh, 2018

For the smaller planets, a power
law is not a bad assumption.

But for the entire dataset, what
functional form would you usg!?

Transitions are less well defined
than previous publications indicate.
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M-R Relation from Kepler

Ning, Wolfgang & Ghosh, 2018

For the smaller planets, a power
law is not a bad assumption.

But for the entire dataset, what
functional form would you usg!?

Transitions are less well defined
than previous publications indicate.

Is there a gap around 1.8 Rearenh??
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See this gap in radius distribution:
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New Predictions for
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New Predictions for Mass:

Mass distribution at 3 Rearth is well constrained!
TESS should focus on [-2 Reareh, even ~ 5 Reareh useful!
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New Predictions for Mass:

Mass distribution at 3 Rearth is well constrained!
TESS should focus on [-2 Reareh, even ~ 5 Reareh useful!
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As a function of Tes (M-dwarfs)

Kanodia, Wolfgang+, in review; arXiv:1903.00042
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As a function of Tes (M-dwarfs)

Kanodia, Wolfgang+, in review; arXiv:1903.00042 Masses (and
1] Radius=1 [ 1 Radius =10 ther.e.fore
M dwarf B Rodios — 3 compositions) for
Nonparametric 3 Rearth planets are
similar for both host
star samples ...
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As a function of Tes (M-dwarfs)

Kanodia, Wolfgang+, in review; arXiv:1903.00042 Masses (and
1] Radius=1 [ 1 Radius =10 ther.e.fore
M dwarf B Rodios — 3 compositions) for
Nonparametric 3 Rearth planets are
similar for both host
star samples ...

But masses for |
and 10 REearth
planets are lower
for smaller stars!
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As a function of Tes (M-dwarfs)

Kanodia, Wolfgang+, in review; arXiv:1903.00042 Masses (and
1] Radius=1 [ 1 Radius =10 ther.e.fore
M dwarf B Rodios — 3 compositions) for
Nonparametric 3 Rearth planets are
similar for both host
star samples ...

But masses for |
and 10 REearth
planets are lower
for smaller stars!
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As a function of Tes (M-dwarfs)

Kanodia, Wolfgang+, in review; arXiv:1903.00042 Masses (and
[ Radius =1 1 Radius = 10 ther.e.fore ¢
M dwarf B Rodios — 3 compositions) for

Nonparametric 3 Rearth planets are
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... but some major biases exist!! star samples ..

(Burt, Holden,Wolfgang+, 20| 8)
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Numerous Future Directions

3 ™ § T . v TN FLPMOM LAY DR AR

' o Transits + RVs + models of photoevaporation:

r What is the core mass distribution of sub-Neptunes?

i What was their initial composition distribution?

t ® Transits + microlensing:

: Is there really a dearth of Earth-sized/mass planets at 1
' 1 AU? How does this scale with stellar mass?

e Microlensing + direct imaging:
Are distant gas giants really not there? How is planet
, | formation influenced by galactic environment?

e RV/transits/direct imaging + stellar abundances: :
Can the stars help predict properties of planets? d
10
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Summary

Observations of planet populations are inherently probabilistic;
our analysis of planet demographics should be too.

Composition distribution of Kepler’s sub-Neptunes:
the typical | < Rearth < 4 planet has ~1% mass in H+He envelope;
95% have envelope fractions between 0.1% and 10 %

The mass-radius relation has astrophysical scatter, so that there’s a
range of possible masses at a given radius. The average mass can
be modeled as a power law for smaller radii.

The Galactic exoplanet census will provide numerous and valuable
constraints on planet formation. Constructing it requires
expertise in astrostatistics and many Ph.D.s worth of research.




