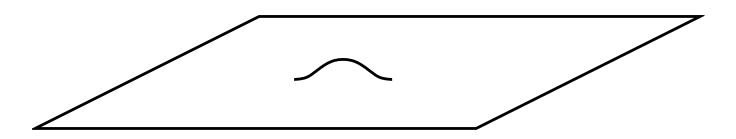
Quantum Loop Gas Approach to Topological States of Matter

M. Freedman, C.N., K. Shtengel, K. Walker, Z. Wang

ITP, June 7, 2004

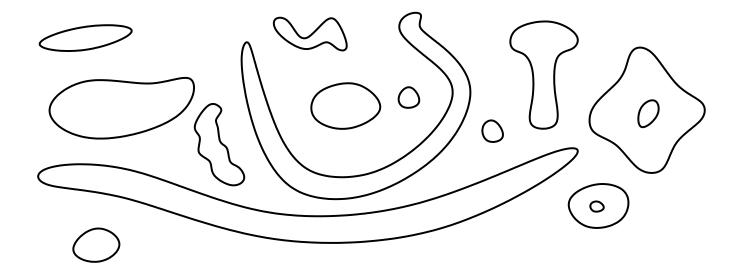
An elastic medium is a simple caricature describing many states of matter:



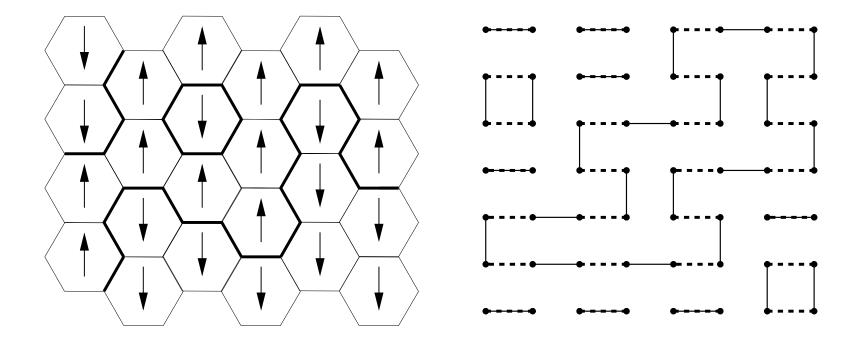
The ground state breaks a symmetry, and the low-lying excitations can be thought of as ripples in the medium which tend to restore the symmetry. They are gapless because in the longwavelength limit, such a ripple is a symmetry operation.

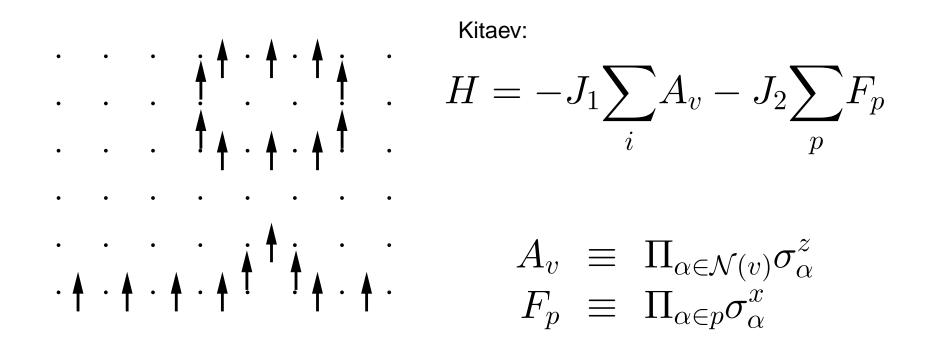
Quantum Loop Gases

In this talk, I will describe states of matter for which the appropriate caricature is a sea of fluctuating loops.

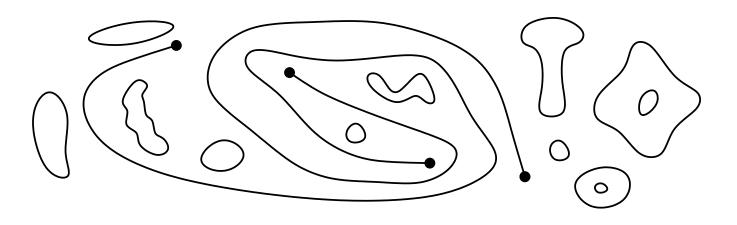


• The loops may arise as domain walls, dimers, chains of up-spins or occupied sites, etc.





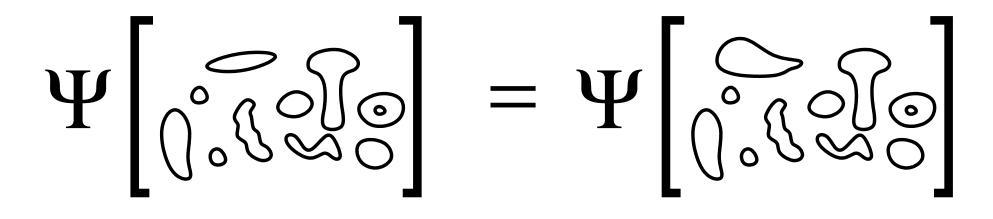
 The loops obey a certain quantum dynamics; depending on the topological rules it imposes, the state may be a stable, gapped topological state or a gapless critical point. Excitations are violations of these rules, e.g. broken loops:



• The rules obeyed by loops determine the braiding properties of the quasiparticles, ground state degeneracy, etc.

Basic Structure of a Class of Theories

• Wavefunctions $\Psi[\alpha]$ on multi-loops α which are invariant under smooth deformations of the loops.



We would expect this for any topological phase.

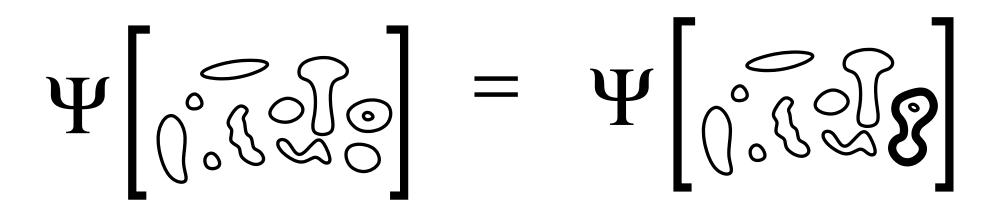
• A 'fugacity' *d* for small, contractible loops.

In Kitaev's model, d = 1.

Without such a relation, the ground state would be degenerate even on the sphere.

 Invariance of the wavefunction under a 'surgery relation' which cuts and rejoins loops,

e.g.



Without such a relation, the ground state would be infinitely degenerate on the torus.

By generalizing the latter two conditions, we will construct a family of topological states of matter, all of which can be described as quantum loop gases.

Consistency Conditions for Quantum Loop Gases

If $d \neq 1$, then the surgery relation must be modified or else there is a contradiction:

$$\Psi[---] = \Psi[---] = \Psi[---]$$

Hence, we must look at surgery relations involving $3, 4, \ldots$ curves.

Important Mathematical Result: For almost all d, there is no consistent surgery relation.

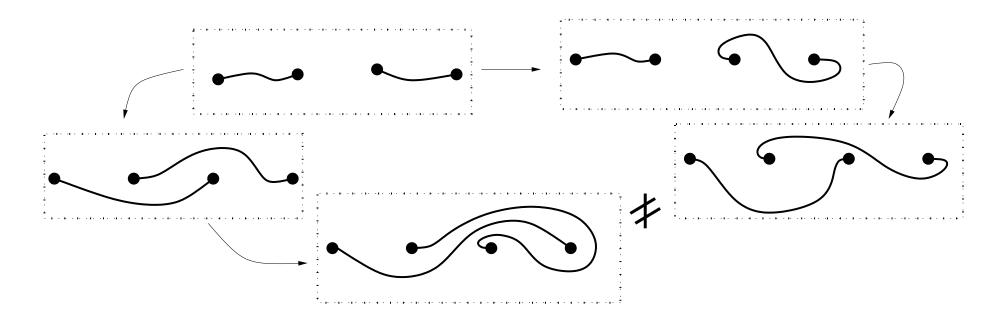
Consistent surgery relations can be found only for $d = 2 \cos\left(\frac{\pi}{k+2}\right)$ (Jones-Wenzl projectors)

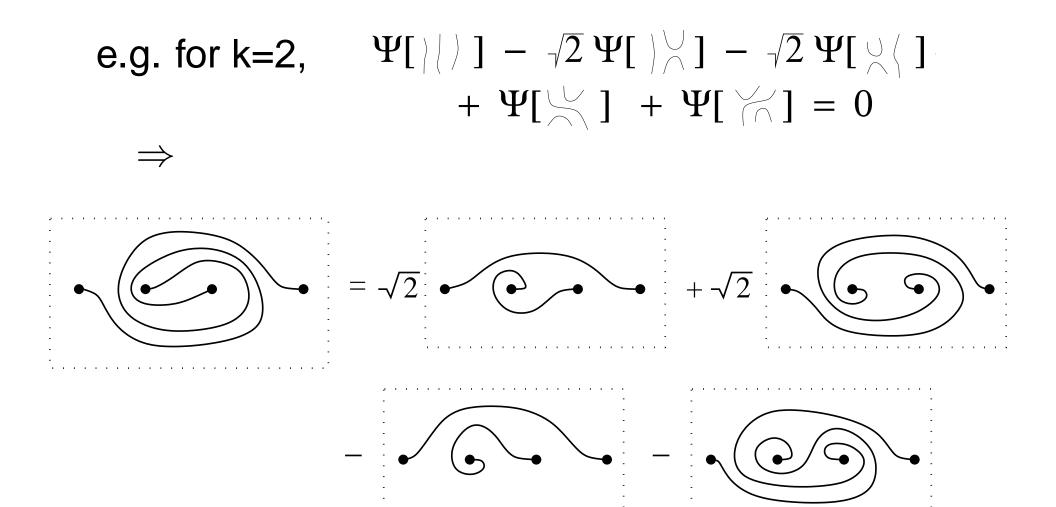
e.g. for
$$d = \sqrt{2}$$
,

$$\Psi[|\rangle| - \sqrt{2} \Psi[|\rangle| - \sqrt{2} \Psi[|\rangle| - \sqrt{2} \Psi[|\rangle| |\rangle] + \Psi[|\rangle| = 0$$

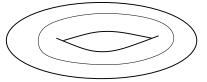
Surgery and Physical Properties

For a given k, the value d assigned to a contractible loop and the associated k + 1-curve surgery relation defines a **topological state**.





9 Ground States on T^2 : (



Field Theoretic Description

- The associated field theories are gauge theories.
- Braiding statistics from the generalized Aharonov-Bohm effect
- Wilson loop operators act in a simple 'pictorial' manner on the argument of wavefunctions.
- Unoriented loops are a feature of SU(2).

'Doubled' $SU(2)_k$ Chern-Simons theories.

$$S_{\rm CS} = \frac{k}{4\pi} \int \operatorname{tr} \left(a \wedge da + \frac{2}{3} a \wedge a \wedge a \right)$$

Important gauge-invariant operators:

$$W[\gamma] \equiv \operatorname{tr}\left(\mathcal{P}e^{i\oint_{\gamma}\mathbf{a}^{c}T^{c}\cdot d\mathbf{l}}\right)$$

Their commutator algebra:

$$[W[\gamma], W[\gamma']] = 2\sin\left(\frac{\pi}{2(k+2)}\right)\sum_{i} \left(W[\gamma \circ_{i} \gamma'] - W[\gamma' \circ_{i} \gamma]\right)$$

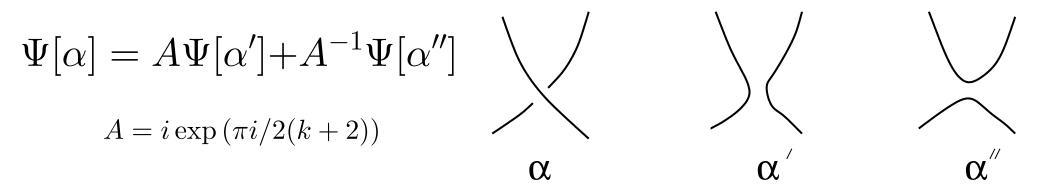
ITP, June 7, 2004

Algebra of Wilson Loops

Can be represented on isotopy, d, surgery-invariant $\Psi[\alpha]$ if:

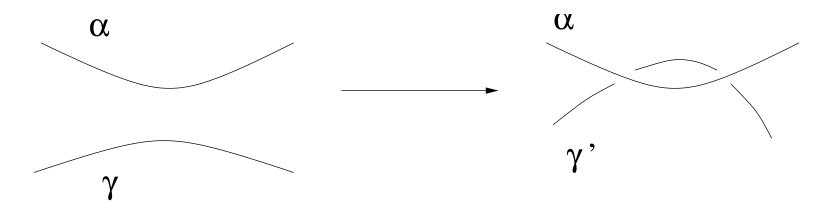
$$W_{+}[\gamma] \Psi[\beta] = \Psi[\beta \star \gamma]$$

where $\alpha \star \gamma = \alpha \cup \gamma$ with intersections resolved by:



This guarantees that the desired commutation relations are obeyed. It also fixes d.

Suppose we deform γ into γ' which has two new intersections with α ,

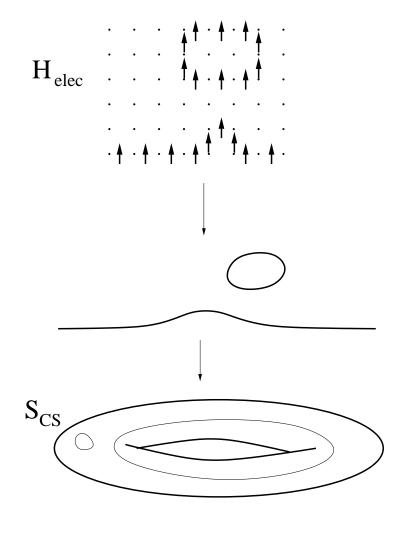


Using the resolution of crossings, we see that $\Psi[\alpha \star \gamma] = \Psi[\alpha \star \gamma']$ iff

$$d = -A^2 - A^{-2} = 2\cos\left(\frac{\pi}{k+2}\right)$$

ITP, June 7, 2004

Descriptions at Different Scales



<u>Short scales</u>: electrons/spins at points (0-D)

Intermed. scales: fluctuating curves/loops (1-D)

Long scales: degenerate ground states on genus-g surfaces (2-D)

Intermediate Scales \sim Nearby Critical Point

Intermed. length scale physics: 'd-isotopy'.

Long-wavelength physics: Jones-Wenzl surgery relations restrict winding numbers and det. the energy gap.

A nearby critical point might determine intermediate length scale physics.

d-isotopy Hamiltonians Spins on the links of the honeycomb lattice:

$$\begin{aligned} H_{\rm d-iso} &= \sum_{v} \left(1 + \prod_{i \in \mathcal{N}(v)} \sigma_{i}^{z} \right) + \sum_{p} \left[\frac{1}{d^{2}} \left(F_{p}^{0} \right)^{\dagger} F_{p}^{0} + \left(F_{p}^{0} \right)^{\dagger} F_{p}^{0} - \frac{1}{d} F_{p}^{0} - \frac{1}{d} \left(F_{p}^{0} \right)^{\dagger} \right. \\ &+ \left(F_{p}^{1} \right)^{\dagger} F_{p}^{1} + \left(F_{p}^{1} \right)^{\dagger} F_{p}^{1} - F_{p}^{1} - \left(F_{p}^{1} \right)^{\dagger} \left(F_{p}^{2} \right)^{\dagger} F_{p}^{2} + \left(F_{p}^{2} \right)^{\dagger} F_{p}^{2} - F_{p}^{2} - \left(F_{p}^{2} \right)^{\dagger} \\ &\left. \left(F_{p}^{3} \right)^{\dagger} F_{p}^{3} + \left(F_{p}^{3} \right)^{\dagger} F_{p}^{3} - F_{p}^{3} - \left(F_{p}^{3} \right)^{\dagger} \right] \end{aligned}$$

$$\begin{array}{rcl} F_p^0 & = & \sigma_1^- \sigma_2^- \sigma_3^- \sigma_4^- \sigma_5^- \sigma_6^- \,, & F_p^1 = \sigma_1^+ \sigma_2^- \sigma_3^- \sigma_4^- \sigma_5^- \sigma_6^- + \mbox{cyclic perm.} \\ F_p^2 & = & \sigma_1^+ \sigma_2^+ \sigma_3^- \sigma_4^- \sigma_5^- \sigma_6^- + \mbox{c. p.} \,, & F_p^3 = \sigma_1^+ \sigma_2^+ \sigma_3^+ \sigma_4^- \sigma_5^- \sigma_6^- + \mbox{c. p.} \end{array}$$

Up-spins again form closed loops which satisfy *d*-isotopy, but without surgery.

Ground State and Stat. Mech. Analogy

$$\ket{\Psi_0} = \sum_lpha d^{n_lpha} \ket{lpha}$$

Can be interpreted as a Loop Gas of fugacity d^2 :

$$\sum_{lpha} |\Psi[lpha]|^2 = Z_{\mathrm{O}(\mathrm{n})}(x=n)$$
 where $n=d^2$

$$Z_{\mathcal{O}(n)}(x) = \int \prod_{i} d\hat{S}_{i} \prod_{\langle i,j \rangle} (1 + x\hat{S}_{i} \cdot \hat{S}_{j}) = \sum_{\alpha} \left(\frac{x}{n}\right)^{\ell_{\alpha}} n^{n_{\alpha}}$$

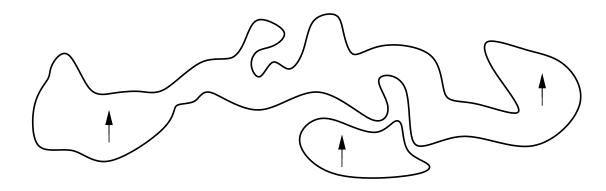
ITP, June 7, 2004

Ground State Properties

For x = n, the O(n < 2) loop model is in its critical low-temperature phase.

- Loops meander over long distances with exponents $\eta_k = \frac{g}{4}k^2 \frac{1}{g}(1-g)^2$ where $n = -2\cos(\pi g)$
- The $x \to \infty$ limit is the FK rep. of the *critical* $q = n^2$ state Potts model, which has the same exponents as the *low-temp.* O(n) model.

The ground state of H_{d-iso} contains long loops characterized by exponents η_k for d ≤ √2, which arise in correlators of non-local operators – referring to the same loop.



- However, correlation functions of local ops. $\vec{\sigma}$ are **short-ranged**.
- A 'Quasi-Topological Phase'.

Low-Energy Excitations

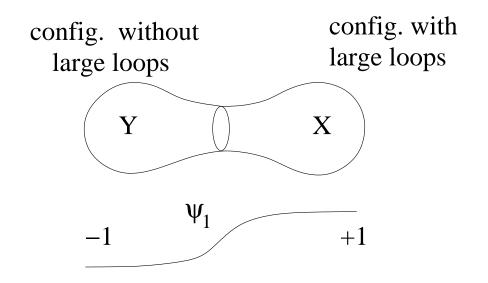
Trial wavefunction:

$$|\Psi_1
angle = \sum_{\alpha \in X} d^{n_\alpha} |\alpha
angle - \sum_{\alpha \in Y} d^{n_\alpha} |\alpha
angle$$

X =configs. with long loops; Y = without.

Since the O(n) model is critical for $n \leq 2$, we can define 'long' so that the prob. of a config. with a long loop is 1/2. Then $\langle \Psi_1 | \Psi_1 \rangle = 0$.

 $\langle \Psi_1 | H_{d-iso} | \Psi_1 \rangle = 0$ because the two sectors of configuration space are not directly connected by the Hamiltonian, i.e. there is a bottleneck.



This is a critical line parametrized by $d \leq \sqrt{2}$.

Low-Energy Field Theory

An effective field theory would help us address stability, dynamics, etc.

 $\bullet \ \omega \sim k^2$

- SU(2) gauge theory
- Local operators equal-time correlations are short-ranged, but non-local operators have power-laws $\eta_k = \frac{g}{4}k^2 \frac{1}{g}(1-g)^2$.

The first two requirements motivate the guess:

$$S = \frac{1}{g^2} \int d^2 x \, d\tau \left(E_i^a \partial_\tau A_i^a + A_0^a D_i E_i^a + \frac{1}{2} E_i^a D^2 E_i^a + \frac{1}{2} B^a B^a \right)$$

But is this interacting theory actually critical?

ITP, June 7, 2004

The first two requirements motivate the guess:

$$S = \frac{1}{g^2} \int d^2 x \, d\tau \left(E_i^a \partial_\tau A_i^a + A_0^a D_i E_i^a + \frac{1}{2} E_i^a D^2 E_i^a + \frac{1}{2} B^a B^a \right)$$

But is this interacting theory actually critical?

At one-loop,

$$\frac{dg}{d\ell} = 0$$

This theory is also on a critical line.

For *g* small, the perturbations $\lambda_1 (E_i^a E_i^a)^2 + \lambda_2 (E_i^a E_j^a)^2$ have runaway flows. This presumably corresponds to $d \ge 2$. The classical limit is massive, as in the *q*-state Potts/O(n) models.

If the conjecture is correct, then for g sufficiently large, these become irrelevant, and in this regime we expect

$$\langle W[\gamma] \rangle = d$$

$$\left\langle \operatorname{tr}\left(E_{i}(x) \mathcal{P}e^{i\int_{0}^{x}a} E_{j}(0) \mathcal{P}e^{i\int_{x}^{0}a}\right) \right\rangle \sim \frac{1}{|x|^{\eta_{2}}} \delta_{ij}$$

ITP, June 7, 2004

Future Directions

With the pictorial-combinatorial description of topological phases in hand, there are many open questions which one hopes to address.

- Electrons, topology, statistical mechanics, gauge theories ... computer science.
- The pictorial representation motivates certain types of microscopic models.

Perturbing away from soluble models, towards more realistic ones.

- Imposing the Jones-Wenzl relations.
- Stability of *d*-isotopy critical line.

References

Foundations

A. Y. Kitaev, Ann. Phys. 303, 2 (2003), quant-ph/9707021.

M. H. Freedman, Commun. Math. Phys. **234**, 129 (2003), quant-ph/0110060.

V. G. Turaev, *Quantum Invariants of Knots and 3-Manifolds*, (Walter de Gruyter, New York 1994).

L. Kauffman and S. Lins, *Temperley Lieb Recoupling theory and invariants of 3-manifolds*, (Princeton Univ. Press 1994).

Quantum Loop Gases – Effective Field Theories to Microscopic Models

M. H. Freedman, C.N., K. Shtengel, K. Walker, Z. Wang, Ann. Phys. **310**, 428 (2004).

M. H. Freedman, C.N., K. Shtengel, cond-mat/0312273.

M. H. Freedman, C.N., K. Shtengel, cond-mat/0309120.

M. Levin and X.-G. Wen, cond-mat/0404617.

Statistical Mechanics of Classical Loop Models

B. Nienhuis, in *Phase Transitions and Critical Phenomena, vol 11* (Academic Press, Singapore, 1987), Chap. 1, pp. 1–53, f. Seitz, D. Turnbull, and H. Ehrenreich, eds.

H. Saleur and B. Duplantier, Phys. Rev. Lett. 58, 2325 (1987).

Related Quantum Critical Points

- C. L. Henley, Journal of Statistical Physics 89, 483 (1997).
- E. Ardonne, P. Fendley, and E. Fradkin, Ann. Phys. 310, 494 (2004).
- E. Fradkin et al., cond-mat/0311353.
- A. Vishwanath, L. Balents, and T. Senthil, cond-mat/0311085.