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Which magnets?

Heisenberg SU(2) spins

H = J
∑

〈ij〉 Si · Sj

network of tetrahedra

3D pyrochlore lattice

+ analogs in 2D and 1D
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Heisenberg spins on a tetrahedron

Degenerate ground state.

S1 + S2 + S3 + S4 = 0.

Classical ground states:
distinct relative orientations
form a manifold S2/D2.

Quantum ground states:
2S + 1 singlets labeled by
total spins of bond 12 or 34:
S12 = S34 = 0, 1, 2 . . . 2S.

Very strong frustration.

2φ

θθ

θ θ

O.T., R. Moessner and S.L. Sondhi, PRB 66, 064403 (2002).
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Pyrochlore lattice: classical spins

Down to T = 10−4JS2:
No magnetic order
No spin-Peierls order
No thermodynamic
singularities

Moessner and Chalker, 1998.

Reminiscent of ZnCr2O4 (S = 3/2) at T > 13 K.

S.-H. Lee et al., Nature 418, 856 (2002).
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Quantum effects as a perturbation: S � 1

Motivation:
Frustration is defined in the classical limit S → ∞.
Existence of a small parameter: 1/S.

Challenges:
Extremely large degeneracy at O(1).
Tendency to form magnetic order (cf. kagome).

Solutions:
Effective interactions for zero-point motion.
Gauge-like Z2 symmetry at O(1/S) kills Neel order.

C.L. Henley (unpublished).
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Zeroth order in 1/S

Geometry:

Tetrahedra α, β, γ,...
form a diamond lattice.

Spins live on links αβ, βγ,...
of the diamond lattice.

βγβα γα
β

Classical energy O(S2):

E0 = J
∑

〈ij〉 Si · Sj = (J/2)
∑

α |Lα|
2 − const,

where {Si} is a classical spin configuration.

Minimized by configs in which Lα ≡
∑

β Sαβ = 0.
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Leading-order correction O(1/S)

Zero-point magnon energy:
Classical ground states are not eigenstates of H.
Virtual excitations are pairs of magnons.
Energy of zero-point quantum motion is O(1/S):

E1 = const +
∑

a ~|ωa|/2.
Find the spin config {Sαβ} minimizing it.

Collinear states are the best bet:
Spin waves are transverse excitations.
More ways to make waves in collinear states.
More virtual excitations ⇒ lower energy.
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Collinear states: Ising gauge symmetry

All spins point along, say, ±ẑ.

New Ising variables σαβ = ±1: Sαβ/S = σαβ ẑ.

Use eqns of motion to obtain {ωa}:
~ dLα/dt = J Sαβ × Lβ. (Moessner and Chalker)

Transverse fluctuations λ = Lx + iLy:
~ω λα = JS σαβ λβ.

“Gauge” symmetry: λα 7→ Λαλα, σαβ 7→ ΛασαβΛ−1

β .

Λα = ±1: keep/flip spins on tetrahedron α.

Gauge-equivalent states have identical spectra. (Henley)

Substantial degeneracy kills Néel order!
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Caveat

Not exactly a gauge symmetry:
Constraint

∑
β σαβ = 0

on every tetrahedron α.

Some gauge transformations
violate it.

Nvacua 6= 2Ntetrahedra .

Nonetheless, Nvacua is large
enough to kill Néel order.

β

Lβ = 0.
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Effective interaction

Heff must be gauge-invariant.

Physical variables are Z2 fluxes
φ(7) = σ̄12σ23 . . . σ̄56σ61 = ±1.
where σ̄ = −σ.

Cluster expansion for Z2 fluxes:

E1

N
=

1

N

∑

γ

a1φγ +
1

2N2

∑

γ,γ′

a2(γ, γ′)φγ φγ′ + . . .
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Effective interaction

Heff must be gauge-invariant.

Physical variables are Z2 fluxes
φ(7) = σ̄12σ23 . . . σ̄56σ61 = ±1.
where σ̄ = −σ.

Cluster expansion for Z2 fluxes:

E1

N
=

1

N

∑

γ

a1φγ +
1

2N2

∑

γ,γ′

a2(γ, γ′) φγ φγ′ + . . .

Does not converge well (spin waves are gapless).
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General expectations

T � JS2, paramagnet (spin gas).

T = O(JS2), classical spin liquid:∑
β Sαβ ≈ 0.

Spins move collectively (groups of 6 in ZnCr2O4).

T = O(JS): Gibbs ensemble of discrete classical states.

Roughly collinear: Si · Sj ≈ ±S2.
No Néel order: 〈Si〉 = 0 (thanks to Z2 “gauge”).
Possibly valence-bond order: 〈Si · Sj − Sk · Sl〉 6= 0.

T = O(J): unique collinear state (Henley):
Néel order: 〈Si〉 6= 0.
Very large magnetic unit cell (64 spins in ZnCr2O4).
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Large-S results

3D pyrochlore lattice:
work in progress

checkerboard:
valence-bond crystal
Z2 × Z2 order parameter
similar to S = 1/2

pyrochlore slice:
valence-bond crystal
q = 4 Potts.
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Checkerboard AF at large S

2L classical vacua selected:
φ(2) = σ̄1σ2σ̄3σ4 = +1.
bonds across 2 equally happy

4 disjoint thermal ensembles:
Location of happy bonds
on 2 sublattices of 4:

H × H, V × V,
H × V, V × H.

S = 1/2: Lhuillier et al. (2001).

Z2 × Z2 valence-bond order.
Thermal phase transition paramagnet 7→ valence-bond crystal:
C. Xu and J.E. Moore, cond-mat/0405271.
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(111) slice of the pyrochlore lattice

Collinear ground states.

Z2 gauge symmetry applies.

Educated guess (Henley):

φ(7) = +1.
2 or 0 frustrated bonds on 7

(counting either ∇ or ∆).

These states 7→ classical dimers on a triangular lattice:
2 frustrated bonds on a 7 = dimer.

Classical valence-bond liquid:
No Néel order: 〈Si〉 = 0.
No valence-bond order: uniform 〈Si · Sj〉.
Topological order (Z2 fluxes on a torus).
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Actual ground states

Numerical minimization:

3/4 hexagons: φ = +1.
the rest: φ = −1.
2 × 2 unit cell.

Still 7→ dimers
on decorated triang. lattice.

−0.3333
−0.1992

−0.4004

−1 −1

−1 −1

+1

+1 +1+1

+1

Broken symmetries:
Spin SU(2) is intact: 〈Si〉 = 0.
Valence-bond order: non-uniform 〈Si · Sj〉.

S = 1/2: A.B. Harris, Berlinsky and Bruder (1991).
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Spin SU(2) is intact: 〈Si〉 = 0.
Valence-bond order: non-uniform 〈Si · Sj〉.

S = 1/2: A.B. Harris, Berlinsky and Bruder (1991).
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Alternative approach: Schwinger bosons

Represent spins in terms of bosons carrying S = 1/2:

S = 1

2
b†α σαβ bβ, S = 1

2
b†αbα, α =↑, ↓.

Si · Sj = const − B†
ijBij,

where Bij = εαβ biαbjβ is a singlet pair of bosons.

SU(2) → SU(2N ) → Sp(N ), 1/N small parameter.

Method particuarly suitable for finding spin liquids:
Featureless quantum ground state.
Deconfined S = 1/2 excitations.
Topological order.
Square lattice with frustration, triangular, kagome.

N. Read and S. Sachdev, late 1980s.
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Schwinger bosons in a pyrochlore

Ground state breaks:
lattice symmetries,
time reversal.

Sp(N ) saddle points related to
classical vacua of SU(2):

take a classical state,
average over global
rotations.

Antiferromagnet built from tetrahedra tends to order:
Valence-bond order, 〈Si · Sj − Sk · Sl〉 6= 0.
Broken time reversal: 〈Si · (Sj × Sk)〉 6= 0.

Antiferromagnet built from triangles does not.
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Pyrochlore antiferromagnet: a summary

Strongly degenerate classical ground state:
1 continuous degree of freedom per tetrahedron.
No order of any kind detected (MC simulations).

Holstein-Primakoff bosons (large S):
Leading quantum corrections at O(1/S).
Collinear ground states are preferred.
The selected states have a Z2 “gauge” symmetry.
Likely no Néel order: 〈Si〉 = 0.
Valence-bond order: 〈Si · Sj − Sk · Sl〉 6= 0.

Schwinger bosons (large N ):
Valence-bond order or broken T reversal.
Spinon deconfinement possible in broken-T state.
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