RVB liquids and cooperative paramagnetism

Roderich Moessner

CNRS and ENS Paris

25 May 2004, Santa Barbara



Overview

e High-T. superconductivity and RVB theory

* The Rokhsar-Kivelson quantum dimer model:
- valence bond solids and RVB liquidsind =2 and d = 3
- description as height/gauge theories

e Connections to highly frustrated magnets (cooperative
paramagnets):

- pyrochlore magnets and spin ice
- large-N approach to determine spin liquid correlations

e Excitations of the RVB liquids:
- excitations in the single-mode approximation
- resonons, photons and piOns

e Conclusions and outlook
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Short-range RVB physics

Basic problem of high-T,.: how do holes hop through an
antiferromagnetic Mott insulator?

Hole motion is frustrated:
hopping creates domain walls
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Possible resolution: magnet enters a different phase
resonating valence bond liquid phase
which breaks no symmetries.

Neighbouring electrons form a singlet (“valence”) bond
—denoted by a dimer.



The basic RVB scenario - electron fractionalisation

Energetics RVB Neel
single pair valence bond optimal
higher coordination || energy from resonance | ... each neighbour
hole doping motion unimpeded motion frustrated
=] ] * Basic resonance move is that of benzene
- o} e Removing an electron — holon + spinon

spinon and holon are
deconfined

l

(bosonic) holons can
condense




Local constraints and quantum dynamics

e ‘Hard’ constraints are ubiquitous (e.g. single occupancy)
o Effective degrees of freedom encode constraint (sometimes)

e Adding quantum dynamics lifts extensive classical
degeneracy (via plaquette resonance; inversion of closed
loops; XY or ring exchange, transverse field)

vertex models Ising ground states

g

— degeneracy + quantum dynamics = ???
— non-perturbative + potentially very interesting (see QHE)



The Rokhsar-Kivelson quantum dimer model
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* Resonance (t) and potential (v) term from uncontrolled
approximation — one parameter: v/t

e RK point v/t =1 is exactly soluble ind =2 atT" = 0:

0) = = 2. l0) = (P) = - 2. Ple) = 5 2. pe
— classical calculation for diagonal operators

e v/t > 1 and limits of v/t — —oo give solid (staggered and
columnar, respectively) phases:



Phase diagram for the square lattice

columnar plaguette
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e all phases confining (break translational symmetry) rx;
Read+Sachdev; Leung; ...

* RK point deconfined rRv+sondhi
* RK point highly degenerate rx

e Crucial ingredient: bipartitness allows height (gauge)
mapping



Height/gauge mapping of square lattice dimer model

Orientation of dimers (from red to blue sublattice) is possible.

Magnetic analogy: dimer = magnetic flux B
V. /N e Link with dimer — flux B = +3

AN\ * Unoccupied link — flux B = —1
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‘Vector potential’ A in d = 2 is simple scalar height function A (
Youngblood et al.)

Mapping to height takes care of hardcore constraint — we can
coarse-grain safely to get effective long-wavelength theory.




Height representation in  d = 2

| Classical (RK point) siote, Nightingale, Hilhorst, ...
coarse-grain h — h to get energy functional of entropic origin:
7 = fDiL exp[Sul; Su = —5 (Vh)?
Il Quantum: guess effective long-wavelength theory rm et al., Henley
S, = [(0:h)? — pa(Vh)? — ps(V2h)? 4 A cos(2mh)

with
* py x (v/t — 1) = 0 at the critical RK point — degeneracy.
e v/t > 1 preferring maximal Vi — staggered

* Forv/t < 1, presence of dangerously irrelevant operator—
flat h — confining solid (plaquette or columnar).

* RK point is ‘deconfined multicritical’ Fradkin et al.



Can we obtain an RVB liquid nonetheless?

* Do all gquantum dimer models order?
* Ind =2+ 1, height model is never in the rough phase
* Possiblilities

- Non-bipartite lattice — triangular RVB (Z5) liquid

- Three dimensions — cubic RVB (U (1)) liquid

- Both — fcc RVB (45) liquid



The triangular short-range RVB liquid
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e Point of principle: RVB liquid existsind =2+ 1
* electron fractionalisation — deconfinement
e gapped excitation spectrum (in single-mode approx.)

* topological order (wen for QHE)



Topological order in the RVB liquid phase

* Winding parity (|e), |o)) invariant under action of local
Hamiltonian

e Liquids locally indistinguishable — sectors degenerate for
L — oo, and (o|H,|e) x exp(—L) for local noise H,,.

e Use as scalable g-bit, iImmune to decoherence? «itaev et al., loffe
etal. — realisation as Josephson junction array?

* Problem: logic gates; non-local operations, ...
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Generalisation to d = 3: cubic lattice (RK point)

Can again use analogy to electrodynamics by orienting dimers.

New feature: B =V x A Is now related to vector potential with
local gauge INvariance. Youngblood+Axe; Henley; Hermele et al.; Huse et al.

Z = [DAexplSa; Su = —E [(V x A)?
gives dipolar correlators:
Cow X (30820 — 1) /17
which agree well with Monte Carlo (left: L = 128; right: L = 32):
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U (1) RVB phase on cubic lattice

Il Quantum: again guess effective long-wavelength theory
S, = [ E* — psB% — py(V x B)?
This Is action of compact QED, with monopoles suppressed
(V- B =0)—
There exists an RVB “Coulomb” liquid phase, with

e deconfinement confining phases RVB  ‘staggered

>

e gapless photons i 0 i v/t
MF TF RK

e ‘quantum order’ (Wen)



Z> RVB phase on face-centred cubic lattice

* The presence/absence of an RVB phase on bipartite lattices
IS a consequence of the respective presence/absence of
deconfining phases in the corresponding U (1) gauge
theoriesind=3+1and d =2+ 1.

e Similarly, the presence of an RVB phase on the triangular
lattice follows from the existence of a deconfined phase in
Z5 gauge theoriesind = 2+ 1. This carries overto d = 3 + 1,
where for the non-bipartite face-centred cubic lattice, an Z;
RVB phase exists (with topological order but without gapless
photons).

* Moral: deconfined dimer phases are more easily found in
d=3+ 1thanind =2+ 1 BUT dimer phases are more
difficult to stabilise in higher dimensions.



Highly frustrated magnetismin d = 3

* Pyrochlore lattice: corner-sharing
tetrahedra.

e antiferromagnetic ground states have
zero total spin on each tetrahedron

* huge degeneracy

- Ising: cubic ice=diamond six vertex
with residual Pauling entropy % In 2;

- H’berg: cooperative paramagnet

No ordering for T' — 0

Lattice of tetrahedra is bipartite — we again ha-
ve conservation law (Henley: R.M. et al.; Hermele et al.)!



Large- IN treatment compared to finite N

Strategy: consider classical O(/N) model N = co. Hope: ‘gross’
features reproduced correctly.

Structure factor in [hhK] pla-
ne for pyrochlore antiferro-
magnet. (Zinkin; Garanin+Canals)

R?x Ising real-space
correlations (different
sizes and directions)
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1/IN corrections

* 1/N corrections preserve ‘dipolar’ form of correlations at
large distances (conservation law)

* non-perturbative effects: order by disorder and ‘vertex
operators’ in d = 2 (forbidden in d = 3)

also works for more general set of models, e.g. three-dimer
model on triangular lattice (aka kagome ring exchange of
Balents et al.)

Treatment IS not
exact but very

accurate




Excitations and the single-mode approximation

* p:(k): dimer density operator (polarisation ¢, wavevector k).

e Ground state: |0), variational excited state |k) = ps(k)|0)

e Single-mode approx.: E, — Ey < f(k)/s(k), where

s(k) = (k|k) and f(k) = (O[[pe(k), [H, pe(=F)]]|0)

* Gapless modes for f(k) — 0 or s(k) — o

* For bipartite lattices, near zone-corner Q: f(Q+k) o< (k x é)?

lattice triangular

pyrochlore

square

excitations

resonons+pi0l




Summary

* RVB liquids:

- different RVB liquids with fractionalisation, topological
order, ...

* range of excitations
- photons, resonons, piOns

* potential realisations:

- correlated electrons
- frustrated magnets

- artificial structures
- cold atoms
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