

Dictionary:		
Non-Abelian Quantum Hall State = A <i>Quantum Hall</i> State Whose <i>Quasiparticle Excitations</i> are Non-Abelions		
<u>Non-Abelion</u> = A Particle Obeying Non-Abelian Statistics		
<u>Non-Abelian Statistics</u> = ?		
April, 2004 Steven H. Simon Bell Labs Innovations		

Simplest State that Quantum Computes : k=3 Parfermionic Read-Rezayi State (Big Brother of Moore-Read Pfaffian)	
Moore-Read Pfaffian (AKA: k=2 parafermion state)	Read-Rezayi k=3 Parafermion
• Exact Ground State of a Short Range 3-body interaction	• Exact Ground State of a Short Range 4-body interaction
• Involves Pairing of Electrons	• Involves 3-Electron clusters
• Majorana on each quasiparticle:	• Z ₃ parafermion on each qp?
QP-hilbert space dimension = $2^{N_{y}/2}$	QP-hilbert space dimension = Fib(N_{qp} -2)
	Horrible "Non-locality"!

How were Non-Abelions "Discovered" ?

Conformal Field Theory Approach - Moore and Read

CAUTION

I am not going to explain this approach in detail

11

Theoretical Status for Rotating Bosons

1. If you tune to a Feshbach Resonance, you get (exactly) the Bose analogue of the Moore-Read Pfaffian (*Cooper*)

2. From Exact Diagonalizations, we *believe* an entire set of Read-Rezayi Non-Abelian Parafermionic states occur at filling fractions (*Cooper, Wilkin, Gunn*)

V = k/2 for k = 2,3,...,11,12

(Z_k parafermionic theory)

3. **BUT** it is hard to extract convincing information from exact diag for Bose systems (Hilbert space is larger than for fermions).

Representing a qubit

For k=3 Read-Rezayi Parafermionic State

Hilbert space grows as

$$Fib(N_{qp} - 2) \sim (2 + Sqrt(5))^{N_{qp}/3} \sim (1.6)^{N_{qp}} < 2^{N_{qp}}$$

Need at least 2qps to make a qubit (But, might represent 2 qubits w/ 3 qps)

- 2 qps can make a qubit, but: Cannot move it around easily (Only nearest neighbor operations) Need to "borrow" other qps to do operations on qubit (B₂ is trivial)
- With 3,4 qps reps of qubit : can move qubits around freely(4 qps can "looks like the qp-vacuum" to outsiders) can do single qubit operations easily. (B₃ and B₄ are sufficiently nontrivial)

Measurements on NonAbelian States 2

Mutual Annihilation: Only groups of particles with the same quantum numbers as the qp-vacuum can annihilate.

Inverse of state initialization problem:

- try to annihilate qp-qh pairs
- try inverse Laughlin flux insertion

"Failed Attempts" to Annihilate qps leave neutral bound states (charge density distribution and excitation spectrum different from the qp-vacuum).

In practice this is very very hard.

Measurements on NonAbelian States 3

Interference Experiments (Mach-Zehnder)

Propose:

- One of the output states is the qubit in the vacuum state (does not change after the test particle goes around it) Should show clear and robust intereference pattern
- Other output state of qubit?

unless qubit has quantum numbers of the qp-vacuum

Decoherence 2

Process #2 Local Perturbations (Phonons, Photons, etc) Do not "Directly" Decohere !!! ...but can Make unwanted qp-qh pairs:

• So long as qp-qh pair re-annihilates *without wrapping around any other quasiparticles* this does not decohere

• Free wandering qps are deadly (also kill QHE)

Need to keep system much much colder than the qp-qh gap! Moore-Read Gap ~ 100 mK Parafermion 12/5 state ~ << 100mK Maybe not so hard?

•Wavefunction is a Scalar (Abelian Statistics):

$$\Psi_{f} = U \Psi_{i} \qquad U = exp(-i \oint d\tau A(\tau))$$

$$A(\tau) = \langle \Psi[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), ...] | \frac{i\partial}{\partial \tau} | \Psi[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), ...] \rangle$$
"gauge field"

$$Phase = \oint d\tau \quad \langle \Psi[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), ...] | \frac{i\partial}{\partial \tau} | \Psi[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), ...] \rangle$$

