Lucent Technologies Bell Labs Innovations

NonAbelions, Quantum Computation, and Quantum Hall Effects

work with
Yaroslav Tserkovnyak, Ilya Finkler (Harvard)
Nick Bonesteel, Kerwin Foster (Florida)
+ General Discussions with A. Stern, E. Rezayi, B. Halperin, N. Cooper, V. Gurarie, N. Read, L. Balents, R. dePicciotto, ...

Dictionary:

Non-Abelian Quantum Hall State $=$ A Quantum Hall State
Whose Quasiparticle Excitations are Non-Abelions
$\underline{\text { Non-Abelion }=A \text { Particle Obeying Non-Abelian Statistics }}$
$\underline{\text { Non-Abelian Statistics }}=$?

Statistics in Brief:

Statistics:
What happens to a many-particle wavefunction under "exchange" of identical particles.

Dogma:

Exchanging twice should be identity

$$
\begin{array}{ll}
\text {-Bosons } & \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\Psi\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right) \\
\text { •Fermions } & \Psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=-\Psi\left(\boldsymbol{r}_{2}, \boldsymbol{r}_{1}\right)
\end{array}
$$

In 2+1 Dimensions: Two Exchanges \neq Identity

In 3+1 Dimensions: Two Exchanges = Identity

No Knots in World Lines in 3+1 D !

Statistics:

In 3+1 D:

- No Knots in World Lines
- Topologically Different Paths = Different Permutations
- Statistics are Rep of the Permutation Group
- Bosons or Fermions

In $2+1 D$:

- Knots in World Lines
- Topologically Different Paths = Different Braids
- Statistics are a Rep of the Braid Group
- More Possibilities (Anyons + Non-Abelions)

Example: Anyons $=$ Fractional Statistics

Quasiparticle Excitations of "Simple" Fractional Quantum Hall States Really Are Anyons!
$\alpha=$ "Statistical Angle"
Bosons: $\alpha=0$
Fermions: $\alpha=\pi$
Anyons: other α
Leinass+Myrheim, Wilczek Laughlin, Halperin, Haldane, Schrieffer+Arovas+Wilczek, ...

No One Has Ever Measured This Cleanly!

What if there is a multiply degenerate ground state?

Statistics Are Matrix Representation of Braid Group: + Matrices are Non-Abelian \longrightarrow

NonAbelian Statistics
(Froelich, Moore+Read)

Example: Anyons = Fractional Statistics

$W=$	$\frac{\text { Topological }}{\frac{\text { Winding Number of Braid }}{\downarrow}}$
	$\Psi_{\mathrm{f}}=e^{i W \alpha} \Psi_{\mathrm{i}}$
	$\alpha=$ "Statistical Angle" Bosons: $\alpha=0$ Fermions: $\alpha=\pi$ Anyons: other α

Non-Abelian Statistics :

-Vector Represents State Within a Degenerate Space

$$
\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle \quad \boldsymbol{\Psi}_{\mathbf{i}}=a_{1}\left|\psi_{1}\right\rangle+a_{2}\left|\psi_{2}\right\rangle=\binom{a_{1}}{a_{2}}
$$

- Unitary (Berry's) Matrix Represents an Adiabatic Braiding Operation

$$
\boldsymbol{\Psi}_{\mathbf{f}}=U \boldsymbol{\Psi}_{\mathbf{i}}
$$

- Usually:

Degenerate Space (Size of Vector/Matrix) is Exponentially Large in Number of Particles

Can it Compute?

Universal Q-Computation \Leftrightarrow Approximate any Unitary Transform
The Moore-Read Pfaffian Cannot Do This!
Braid Group Representation is not "Dense"

April, 2004
Steven H. Simon

Simplest State that Quantum Computes :
k=3 Parfermionic Read-Rezayi State
(Big Brother of Moore-Read Pfaffian)

Moore-Read Pfaffian (AKA: $\mathrm{k}=2$ parafermion state)

- Exact Ground State of a Short Range 3-body interaction
- Involves Pairing of Electrons
- Majorana on each quasiparticle: QP-hilbert space dimension

$$
=2^{\mathrm{N}_{\mathrm{w}} / 2}
$$

Read-Rezayi k=3 Parafermion

- Exact Ground State of a

Short Range 4-body interaction

- Involves 3-Electron clusters
- Z_{3} parafermion on each qp ?

QP-hilbert space dimension $=\operatorname{Fib}\left(\mathrm{N}_{\mathrm{qp}}-2\right)$

Horrible "Non-locality"!

How were Non-Abelions "Discovered"?
Conformal Field Theory Approach - Moore and Read

CAUTION

I am not going to explain this approach in detail

How were Non-Abelions "Discovered"?
Conformal Field Theory Approach - Moore and Read
-Wavefunctions can be written as correlators of a CFT, ex:
Laughlin Wavefunction: $\Psi_{\text {Laughlin }}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m}$

Define a CFT: $\quad\langle\phi(w) \phi(z)\rangle \sim-\boldsymbol{\operatorname { l o g }}(z-w)$

$$
\Psi_{\text {Laughlin }}=\prod_{i<j} e^{-m\left\langle\phi\left(z_{i}\right) \phi\left(z_{j}\right)\right\rangle}=\left\langle\prod_{i} e^{i \sqrt{m} \phi\left(z_{i}\right)}\right\rangle
$$

- More Complex CFT's generate more complex wavefunctions

Can demonstrate Degeneracy of Multi-Quasiparticle States by counting conformal blocks

How were Non-Abelions "Discovered"?
Conformal Field Theory Approach - Moore and Read
-Wavefunctions can be written as correlators of a CFT, ex:
Laughlin Wavefunction: $\Psi_{\text {Laughlin }}=\prod_{i<j}\left(z_{i}-z_{j}\right)^{m}$

- More Complex CFT's generate more complex wavefunctions

Can demonstrate Degeneracy of Multi-Quasiparticle States by counting conformal blocks

Assuming the missing link:
k=3 Parfermionic Read-Rezayi State
Related to $\mathrm{SU}(2)_{\mathrm{k}}$ Chern-Simons Theory

Theorem by Freedman et al:
$\mathrm{SU}(2)_{\mathrm{k}}$ rep of the braid group can quantum compute
Except $\mathrm{k}=1,2,4$

Non-Abelian Quantum Hall States

1. Non-Abelian Statistics for Beginners
2. What are the Candidate States
3. Numerical Experiments (some results)
4. Musings about Quantum Computation

Non-Abelian Quantum Hall State Candidates:

- $v=5 / 2 ; 7 / 2$

Probably Moore-Read Pfaffian State $=$ BCS chiral p-wave paired composite fermions

- $v=12 / 5 ; 13 / 5$

Maybe Read-Rezayi Parafermionic State ?

These States are thought to have Non-Abelian Quasiparticle Excitations!

VoLume 83, Number 17	PHYSICAL REVIEW LETTERS

Exact Quantization of the Even-Denominator Fractional Quantum Hall State at $\boldsymbol{\nu}=5 / 2$ Landau Level Filling Factor
W. Pan, ${ }^{1.2}$ J.-S. Xia, ${ }^{2.3}$ V. Shvarts, ${ }^{2.3}$ D. E. Adams, ${ }^{23}$ H. L. Stormer, ${ }^{4.5}$ D. C. T sui, ${ }^{1}$ L. N. Pfeiffer, ${ }^{5}$ K. W. Baldwin, ${ }^{5}$ and K. W. West ${ }^{5}$

Insulating and Fractional Quantum Hall States in the First Excited Landau Level
J. P. Eisenstein. ${ }^{1}$ K. B. Cooper, ${ }^{1}$ L. N. Pfeiffer, ${ }^{2}$ and K. W. West ${ }^{2}$

Mobility $=31$ million $\mathrm{cm}^{2} /$ Vsec.
$\mathrm{T}=15 \mathrm{mK}$.

Numerical Evidence from Small System Diagonalization

5/2, 7/2 (Rezayi and Haldane, Morf)
-Very Close to a transition from MooreRead (Pfaffian) State to Stripe State
-Observation of quantization is very good
 evidence for Moore-Read (no other good candidate)

12/5, 13/5 (Read and Rezayi)

- Parafermion State seems favored compared to Hierarchy FQHE state

Non-Abelian Quantum Hall State Candidates:

- $v=5 / 2 ; 7 / 2$

Probably Moore-Read Pfaffian State = BCS chiral p-wave paired composite fermions

- $v=12 / 5 ; 13 / 5$ Maybe Read-Rezayi Parafermionic State?

These States are thought to have Non-Abelian Quasiparticle Excitations!

$$
\begin{gathered}
\text { Also discussion of } \\
v=3 / 8,4 / 11, \ldots
\end{gathered}
$$

Also Good Candidates
in Rotating "2D" Bose Condensates
(Cooper, Wikkin, Gunn)

Rotating Bose Condensates : (Overhead Stolen From Nigel Cooper)

Theoretical Status for Rotating Bosons

1. If you tune to a Feshbach Resonance, you get (exactly) the Bose analogue of the Moore-Read Pfaffian (Cooper)
2. From Exact Diagonalizations, we believe an entire set of Read-Rezayi Non-Abelian Parafermionic states occur at filling fractions (Cooper, Wilkin, Gunn)

$$
\nu=\mathrm{k} / 2 \quad \text { for } \mathrm{k}=2,3, \ldots 11,12
$$

(Z_{k} parafermionic theory)
3. $\boldsymbol{B} \boldsymbol{U} \boldsymbol{T}$ it is hard to extract convincing information from exact diag for Bose systems (Hilbert space is larger than for fermions).

Non-Abelian Quantum Hall States

1. Non-Abelian Statistics for Beginners
2. What are the Candidate States
3. Numerical Experiments (some results)
4. Musings about ${ }_{4}$ Quantum Computation

Topological

1. Representing qubits
2. Initializing
3. Computation (Braiding)

This is an Engineering Problem
There are Tradeoffs
4. Reading out
5. Decoherence

1. Representing qubits
2. Initializing
3. Computation (Braiding)

This is an Engineering Problem
There are Tradeoffs
4. Reading out
5. Decoherence

Representing a qubit

For k=3 Read-Rezayi Parafermionic State

Hilbert space grows as

$$
\operatorname{Fib}\left(\mathrm{N}_{\mathrm{qp}}-2\right) \sim(2+\operatorname{Sqrt}(5)) \mathrm{N}_{\mathrm{qp}} / 3 \sim(1.6)^{\mathrm{N}_{\mathrm{qp}}}<2^{\mathrm{N}_{\mathrm{qp}}}
$$

Need at least 2qps to make a qubit (But, might represent 2 qubits w/ 3 qps)

- 2 qps can make a qubit, but:

Cannot move it around easily (Only nearest neighbor operations)
Need to "borrow" other qps to do operations on qubit (B_{2} is trivial)

- With 3,4 qps reps of qubit :
can move qubits around freely(4 qps can "looks like the qp-vacuum" to outsiders) can do single qubit operations easily. (B_{3} and B_{4} are sufficiently nontrivial)

More on Quantum Computation: Issues:

1. Representing qubits
2. Initializing
3. Computation (Braiding)

This is an Engineering Problem
There are Tradeoffs
4. Reading out
5. Decoherence

April, 2004
Steven H. Simon Bell Labs Innovations

Initialization:

Locality Principle: Local operations are undetectable far away unless already entangled with far away quasiparticles.

- Create States that have same quantum numbers as the qp-vacuum:

1. Adiabatic flux insertion (Laughlin creation of quasiholes) creates $k(=3)$ quasiparticles
2. Pulling qh-qp pair from the qp-vacuum

- If you are very good at measuring your state, you can generate random qubits locally until you find one in the initial state you like.

1. Representing qubits
2. Initializing
3. Computation (Braiding)

This is an Engineering Problem There are Tradeoffs
4. Reading out
5. Decoherence

Computation by Braiding (Ex: k=3 parafermions)

Operation on qubit 2 only

April, 2004
Steven H. Simon

Computation by Braiding (Ex: k=3 parafermions)

A two qubit gate:

Note: It may take Many Braid Operations to approximate even something simple like a single qubit rotation or a CNOT gate.
Kitaev-Solovay Approximation Theorem assures us it only gets \log harder to approximate answer more closely (but prefactor can be big)

Computation by Braiding

There is no escaping the need to move around quasiparticles in complicated ways.
(1) Rotating Bose : perhaps easier?
(2) Quantum Hall : the edge of what is conceivable

How much more insane than other Q-computation proposals?
Note: You can work with Blobs of Quasiparticles, so long as you can move them without dropping any
"Blobological" quantum computation

April, 2004
Steven H. Simon

Preliminary Experiment to Manipulate Quasiparticles (Simon '99)

Quantum Hall Quasiparticle Pump

Experiment Currently Being Pursued by Marcus et al

More on Quantum Computation: Issues:

1. Representing qubits
2. Initializing
3. Computation (Braiding)

This is an Engineering Problem
There are Tradeoffs
4. Reading out
5. Decoherence

Measurements on NonAbelian States 1

When 2 qp's are moved close together, the degenerate states will split. Details of splitting depend on state of the qubit

Example: Pfaffian w/ Majorana Quasiparticles

Measurements on NonAbelian States 2

Mutual Annihilation: Only groups of particles with the same quantum numbers as the qp-vacuum can annihilate.

Inverse of state initialization problem:

- try to annihilate qp-qh pairs
- try inverse Laughlin flux insertion
"Failed Attempts" to Annihilate qps leave neutral bound states (charge density distribution and excitation spectrum different from the qp-vacuum).

In practice this is very very hard.

Measurements on NonAbelian States 3
Interference Experiments (Mach-Zehnder)

Horrible Complication:

- Want to send more than 1 test qp
- Test qp braiding around output qubit can change the state of the system
- Next test qp gives a different result!
unless qubit has quantum numbers of the qp-vacuum

Measurements on NonAbelian States 3

Interference Experiments (Mach-Zehnder)

Propose:

- One of the output states is the qubit in the vacuum state (does not change after the test particle goes around it) Should show clear and robust intereference pattern
- Other output state of qubit?
unless qubit has quantum numbers of the qp-vacuum

Measurements on NonAbelian States 3
Interference Experiments (Mach-Zehnder): Heiblum et al Nature 2003

More on Quantum Computation: Issues:

1. Representing qubits
2. Initializing
3. Computation (Braiding)

This is an Engineering Problem
There are Tradeoffs
4. Reading out
5. Decoherence etc

Decoherence 1

Process \#1 Stray Braids:

- An additional braid occurs that you didnt' intend

Can make this arbitrarily small (keep qps far apart)

Decoherence 2

Process \#2 Local Perturbations (Phonons, Photons, etc)
Do not "Directly" Decohere !!!
.. .but can Make unwanted qp-qh pairs:

- So long as qp-qh pair re-annihilates without wrapping around any other quasiparticles this does not decohere
- Free wandering qps are deadly (also kill QHE)

Need to keep system much much colder than the qp-qh gap!
Moore-Read Gap ~ 100 mK
Parafermion $12 / 5$ state $\sim \ll 100 \mathrm{mK}$
Maybe not so hard?

Decoherence 3

Problem \#3: Slight Nondegeneracy of Hilbert Space:

- For any finite distance between qp's there is some tunneling (hence splitting) between the states of the degenerate space
[Ex: Hopping of majoranas for the Moore-Read state] How small is tunneling as a function of the the distance?
- Nonabelian Statistics becomes an approximation valid only over time scales short compared to this tunneling.

May Need to do computation in a limited time !
Need to keep qp's far apart! Even stray trapped qps

Rotating Bose?

Non-Abelian Quantum Hall States

1. Non-Abelian Statistics for Beginners
2. What are the Candidate States
3. Numerical Experiments (some results)
4. Musings about Quantum Computation

How To Demonstrate Braiding Behavior (Statistics) Theoretically?
Example: Fractional Statistics for Simple Fractional Hall States

Adiabatically drag one quasiparticle around the other, and calculate the accumulated (Berry's) phase

$$
\text { Phase }=\oint d \tau \quad\left\langle\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle
$$

Where does Berry's Phase Come From? (correction to Born-Opp)

Given a Family of Hamiltonians H_{τ} with (zero energy) Eigenstates Ψ_{τ}

$$
\Phi_{\tau}=e^{i \theta} \Psi_{\tau}
$$

Solve Time Dependent Shroedinger Eq.

$$
\begin{aligned}
& i \partial_{t} \Phi=\mathrm{H} \Phi=0 \\
& \left(i \partial_{t} \theta\right) \Psi+i \partial_{t} \Psi=0 \\
& \partial_{t} \theta=\langle\Psi| i \partial_{t}|\Psi\rangle
\end{aligned}
$$

$$
\text { Phase }=\oint d \tau\left\langle\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle
$$

How To Demonstrate Braiding Behavior (Statistics) Theoretically?
Example: Fractional Statistics for Abelian Fractional Hall States

Adiabatically drag one quasiparticle around the other, and calculate the accumulated (Berry's) phase

$$
\text { Phase }=\oint d \tau\left\langle\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle
$$

How To Demonstrate Braiding Behavior (Statistics) Theoretically?
Example: Fractional Statistics for Abelian Fractional Hall States
For Quantum Hall Effect You Know Ψ (Ex, Laughlin)
So You Can Calculate The Berry's Phase and Hence the Statistics. (Arovas, Schrieffer, Wilczek, 1984)

Even if you know the Ψ you still need to Integrate over all of the many electron positions to find \rangle

It is a "scandal" that we have not done something like this for the Pfaffian - Wilczek 2002

Phase $=\oint d \tau \quad\left\langle\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle$
-Wavefunction is a Scalar (Abelian Statistics):

$$
\Psi_{f}=U \Psi_{i} \quad U=\exp (-i \oint d \tau A(\tau))
$$

$$
A(\tau)=\left\langle\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle
$$

"gauge field"

$$
\text { Phase }=\oint d \tau \quad\left\langle\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle
$$

-Wavefunction is a Scalar (Abelian Statistics):

$$
\begin{array}{ll}
\Psi_{f}=U \Psi_{i} & U=\exp (-i \oint d \tau A(\tau)) \\
A(\tau)=\left\langle\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\Psi\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle
\end{array}
$$

- Wavefunction is a Vector in a Degenerate subspace (Non-Abelian)

$$
\begin{aligned}
& \begin{array}{|c|}
\hline \text { Berry's Matrix } \\
\boldsymbol{\Psi}_{\mathbf{i}}=a_{1}\left|\psi_{1}\right\rangle+a_{2}\left|\psi_{2}\right\rangle=\binom{a_{1}}{a_{2}} \\
U=P \mathbf{\Psi}_{\mathbf{i}}
\end{array} \\
& A_{\alpha \beta}(\tau)=\left\langle\psi_{\alpha}\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\psi_{\beta}\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle \\
& \text { NonAbelian Gauge Field } \\
& \text { Wilczek and Zee, } 1984
\end{aligned}
$$

For the Moore-Read Pfaffian:

(a) Have a good guess of the braiding result

Moore-Read; Nayak Wilczek - CFT Ivanov; Von-Oppen+Stern - BCS
(b) Have simple expressions for trial wavefunction $\boldsymbol{\psi}_{\boldsymbol{\alpha}}=\sqrt{\operatorname{det}\left[g\left(z_{i}-z_{j}\right)\right]}$
ψ_{α} can be evaluated efficiently numerically: Time $\sim\left(N_{e}\right)^{3}$

Want To Calculate This

$$
\Psi_{\mathbf{f}}=U \boldsymbol{\Psi}_{\mathbf{i}} \quad U \quad U=\operatorname{Pexp}(-i \oint d \tau A(\tau))
$$

$$
A_{\alpha \beta}(\tau)=\left\langle\psi_{\alpha}\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\psi_{\beta}\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle
$$

For the Moore-Read Pfaffian:

(a) Have a good guess of the braiding result

Moore-Read; Nayak Wilczek - CFT Ivanov; Von-Oppen+Stern - BCS
(b) Have simple expressions for trial wavefunction $\left.\quad \boldsymbol{\psi}_{\alpha}=\sqrt{\operatorname{det}\left[g\left(z_{i}-z_{j}\right)\right.}\right]$

For the Parafermion States:

(a) Know Less About Braiding Behavior (Slingerland+Bais) antisym
(b) Have expressions for trial wavefunctions: $\boldsymbol{\psi}_{\alpha}=A\left[F\left(z_{l}, \ldots z_{N}\right) ; \stackrel{\ominus}{\curvearrowleft}\right.$
ψ_{α} CANNOT be evaluated efficiently numerically: Time $\sim \mathrm{N}_{\mathrm{e}}$!

For the Parafermion States: (w/ Finkler)
(a) Know Less About Braiding Behavior
(b) Have expressions for trial wavefunctions

ψ_{α} CANNOT be evaluated efficiently numerically : Time $\sim \mathrm{N}_{\mathrm{e}}$!

Trick to calculate gauge field $A_{\alpha \beta}(\tau)$ while avoiding ψ_{α}
$\boldsymbol{\Psi}_{\mathbf{f}}=U \boldsymbol{\Psi}_{\mathbf{i}} \quad \forall \quad U=P \exp (-i \oint d \tau A(\tau))$
$A_{\alpha \beta}(\tau)=\left\langle\psi_{\alpha}\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right| \frac{i \partial}{\partial \tau}\left|\psi_{\beta}\left[\mathbf{r}_{1}(\tau), \mathbf{r}_{2}(\tau), \ldots\right]\right\rangle$

Our Numerical Experiments (w/ Tserkovnyak):
(a) Consider Pfaffian State (and simple Laughlin States) : up to 64 electrons, up to 6 quasi-holes
(b) Calculations done on a sphere : Bigger $\mathrm{N}_{\mathrm{e}} \Rightarrow$ Bigger Sphere

(c) Use quantum monte carlo to find out what happens to Ψ

Example: Pfaffian w/ 4 Quasiholes
4 such exchanges $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathrm{U}_{4}$

- 2 Dimensional Degenerate Subspace (pick an easy basis)
- CFT Prediction

$$
\begin{aligned}
& U_{1}=U_{3}=\frac{1}{2}\left[(1+i)+(1-i) \sigma_{z}\right] \\
& U_{2}=U_{4}=\frac{1}{2}\left[(1-i)+(-1-i) \sigma_{x}\right]
\end{aligned}
$$

-Parameterize

$$
U_{1}=e^{i x}\left(\begin{array}{cc}
e^{i \eta} \cos \beta / 2 & i e^{-i \varepsilon / 2} \sin \beta / 2 \\
i e^{i \varepsilon} \sin \beta / 2 & e^{-i \eta} \cos \beta / 2
\end{array}\right)
$$

-Predict $\quad \eta=.25, \beta=0$

Non-Abelian Quantum Hall States

1. Non-Abelian Statistics for Beginners
2. What are the Candidate States
3. Numerical Experiments (a few results)
4. Musings on Quantum Computation
5. Chern-Simons Theory and

Possible Real Experiments (a few more results)
How Do We Know $5 / 2$ is a Pfaffian?

Need Predictions for Experimental Signatures

(w/ Foster, Bonesteel)

How To Calculate Properties of The Moore-Read Pfaffian?

Grieter, Wen, Wilczek
Green+Read
Ivanov
VonOppen+Stern

The Moore-Read Pfaffian as a Superconductor of Composite Fermions:

- $v=1 / 2$ @ Mean field level = Fermions in zero magnetic field
- At high T forms a "Composite Fermion" Fermi Liquid (HLR,Jain) (Experiment by Willett et al)
- At low T becomes a (chiral p-wave) superconductor $=$ Pfaffian

Is the 5/2 State a "Superconductor" ?

How do you tell any state is a superconductor?
No Resistance = Quantized Hall State
Meissner Effect = Electromagnetic Response Function
\Rightarrow Surface Acoustic Wave, Microwave, Raman Response
Coherence Effects? NMR Relaxation (Hebel Slichter)

Calculations :

Based on Superconducting Composite Fermion Picture Calculate Electromagnetic Response Functions to Make Predictions for
\Rightarrow Surface Acoustic Wave, Microwave, Raman Response

- Step 1:

Calculate Response Function of Composite Fermions
"Standard" Superconductivity Calculation

- Step 2:

Convert Composite Fermion Response To Electron Response (RPA)

$$
\sigma_{x x}^{e l}\left(q_{x}, \omega\right) \sim \frac{1}{\sigma_{y y}^{C F}\left(q_{x}, \omega\right)}
$$

In High B, Longitudinal and Transverse Get Mixed and Inverted

Summary:

- Non-Abelian States are very exotic
- Very Powerful for Quantum Computation?
-Quantum Monte Carlo (Numerical Expts) :
Confirms Conjectures from CFT for Pfaffian Parafermions Coming Soon (Hopefully) !
- Mapping to Superconducting Composite Fermions :

Analysis of Response

April, 2004 Bell Labs Innovations

Many Thanks To My Collaborators:
Y. Tserkovnyak, I. Finkler, K. Foster, N. Bonesteel

And Thanks to Other People Too:
V. Gurarie, N. Read, E. Rezayi, A. Stern,
N. Cooper, B. Halperin, L. Balents, ...

