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An elastic medium is a simple caricature
describing many states of matter:

The ground state breaks a symmetry, and
the low-lying excitations can be thought of as
ripples in the medium which tend to restore the
symmetry. They are gapless because in the long-
wavelength limit, such a ripple is a symmetry
operation.

ITP, June 7, 2004 1



Quantum Loop Gases

In this talk, I will describe states of matter
for which the appropriate caricature is a sea of
fluctuating loops.
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• The loops may arise as domain walls, dimers,
chains of up-spins or occupied sites, etc.
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Kitaev:

H = −J1

∑
i

Av − J2

∑
p

Fp

Av ≡ Πα∈N (v)σ
z
α

Fp ≡ Πα∈pσ
x
α

• The loops obey a certain quantum dynamics;
depending on the topological rules it imposes,
the state may be a stable, gapped topological
state or a gapless critical point.
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• Excitations are violations of these rules, e.g.
broken loops:

• The rules obeyed by loops determine the
braiding properties of the quasiparticles, ground
state degeneracy, etc.
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Basic Structure of a Class of Theories

• Wavefunctions Ψ[α] on multi-loops α which are
invariant under smooth deformations of the
loops.

ΨΨ =

We would expect this for any topological phase.
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• A ‘fugacity’ d for small, contractible loops.

ΨΨ = d

In Kitaev’s model, d = 1.

Without such a relation, the ground state would
be degenerate even on the sphere.
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• Invariance of the wavefunction under a ‘surgery
relation’ which cuts and rejoins loops,

e.g.

ΨΨ = 

Without such a relation, the ground state would
be infinitely degenerate on the torus.
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By generalizing the latter two conditions, we
will construct a family of topological states
of matter, all of which can be described as
quantum loop gases.
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Consistency Conditions for Quantum Loop Gases

If d 6= 1, then the surgery relation must be
modified or else there is a contradiction:

=Ψ[        ] Ψ[        ] Ψ[        ] d Ψ[        ]==

Hence, we must look at surgery relations
involving 3, 4, . . . curves.
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Important Mathematical Result : For almost all
d, there is no consistent surgery relation .

Consistent surgery relations can be found only

for d = 2 cos
(

π

k + 2

)
(Jones-Wenzl projectors)

e.g. for d =
√

2,

Ψ[      ]  −    2 Ψ[      ]  −    2 Ψ[      ]
         +  Ψ[      ]   +  Ψ[      ]  =  0
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Surgery and Physical Properties

For a given k, the value d assigned to a
contractible loop and the associated k + 1-curve
surgery relation defines a topological state .
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e.g. for k=2, Ψ[      ]  −    2 Ψ[      ]  −    2 Ψ[      ]
         +  Ψ[      ]   +  Ψ[      ]  =  0

⇒

2= 2+ 

9 Ground States on T 2:
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Field Theoretic Description

• The associated field theories are gauge
theories.

• Braiding statistics from the generalized Aharonov-
Bohm effect

• Wilson loop operators act in a simple ‘pictorial’
manner on the argument of wavefunctions.

• Unoriented loops are a feature of SU(2).
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‘Doubled’ SU(2)k Chern-Simons theories.

SCS =
k

4π

∫
tr

(
a ∧ da +

2
3
a ∧ a ∧ a

)

Important gauge-invariant operators:

W [γ] ≡ tr
(
Pei

∮
γacT c·dl

)
Their commutator algebra:

[W [γ],W [γ′]] = 2 sin
(

π

2(k + 2)

) ∑
i

(W [γ◦iγ
′]−W [γ′◦iγ])
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Algebra of Wilson Loops

Can be represented on isotopy, d, surgery-invariant Ψ[α] if:

W+[γ] Ψ[β] = Ψ[β?γ]

where α ? γ = α ∪ γ with intersections resolved by:

Ψ[α] = AΨ[α′]+A−1Ψ[α′′]

A = i exp (πi/2(k + 2))
αα α
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This guarantees that the desired commutation
relations are obeyed. It also fixes d.

Suppose we deform γ into γ′ which has two new intersections with α,

α

γ

α

γ ’

Using the resolution of crossings, we see that Ψ[α?γ] = Ψ[α?γ′] iff

d = −A2 −A−2 = 2 cos
(

π

k + 2

)
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Descriptions at Different Scales
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SCS

H elec

Short scales: electrons/spins
at points (0-D)

Intermed. scales: fluctuating
curves/loops (1-D)

Long scales: degenerate
ground states on genus-g
surfaces (2-D)
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Intermediate Scales ∼ Nearby Critical Point

Intermed. length scale physics: ‘d-isotopy’ .

Long-wavelength physics: Jones-Wenzl surgery
relations restrict winding numbers and det. the
energy gap.

A nearby critical point might determine
intermediate length scale physics.
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d-isotopy Hamiltonians

Spins on the links of the honeycomb lattice:

Hd−iso =
X

v

„
1 +

Y
i∈N (v)

σ
z
i

«
+

X
p

»
1

d2

“
F

0
p

”†
F

0
p +

“
F

0
p

”†
F

0
p −
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d
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–
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6 , F

1
p = σ

+
1 σ

−
2 σ

−
3 σ

−
4 σ

−
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−
6 + cyclic perm.

F
2
p = σ

+
1 σ

+
2 σ

−
3 σ

−
4 σ

−
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−
6 + c. p. , F

3
p = σ

+
1 σ

+
2 σ

+
3 σ

−
4 σ

−
5 σ

−
6 + c. p.

Up-spins again form closed loops which satisfy d-
isotopy, but without surgery.
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Ground State and Stat. Mech. Analogy

|Ψ0〉 =
∑

α

dnα |α〉

Can be interpreted as a Loop Gas of fugacity d2:∑
α

|Ψ[α]|2 = ZO(n)(x = n) where n = d2

ZO(n)(x) =
∫ ∏

i

dŜi

∏
〈i,j〉

(1 + xŜi · Ŝj) =
∑
α

(x

n

)`α

nnα
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Ground State Properties

For x = n, the O(n < 2) loop model is in its
critical low-temperature phase.

• Loops meander over long distances with
exponents ηk = g

4k
2 − 1

g(1− g)2 where
n = − 2 cos(πg)

• The x → ∞ limit is the FK rep. of the critical
q = n2 state Potts model, which has the same
exponents as the low-temp. O(n) model.
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• The ground state of Hd−iso contains long
loops characterized by exponents ηk for
d ≤

√
2, which arise in correlators of non-local

operators – referring to the same loop.

• However, correlation functions of local ops. ~σ

are short-ranged .

• A ‘Quasi-Topological Phase’.
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Low-Energy Excitations

Trial wavefunction:

|Ψ1〉 =
∑
α∈X

dnα |α〉 −
∑
α∈Y

dnα |α〉

X = configs. with long loops; Y = without.

Since the O(n) model is critical for n ≤ 2, we
can define ‘long’ so that the prob. of a config. with
a long loop is 1/2. Then 〈Ψ1|Ψ1〉 = 0.
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〈Ψ1|Hd−iso|Ψ1〉 = 0 because the two sectors of
configuration space are not directly connected by
the Hamiltonian, i.e. there is a bottleneck.

config.  without

1
−1 +1

config. with
large loops

XY

large loops

ψ

This is a critical line parametrized by d ≤
√

2.
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Low-Energy Field Theory

An effective field theory would help us address
stability, dynamics, etc.

• ω ∼ k2

• SU(2) gauge theory

• Local operators equal-time correlations are
short-ranged, but non-local operators have
power-laws ηk = g

4k
2 − 1

g(1− g)2.
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The first two requirements motivate the guess:

S =
1
g2

∫
d2x dτ

(
Ea

i ∂τA
a
i + Aa

0DiE
a
i +

1
2
Ea

i D
2Ea

i +
1
2
BaBa

)
But is this interacting theory actually critical?

ITP, June 7, 2004 27



The first two requirements motivate the guess:

S =
1
g2

∫
d2x dτ

(
Ea

i ∂τA
a
i + Aa

0DiE
a
i +

1
2
Ea

i D
2Ea

i +
1
2
BaBa

)
But is this interacting theory actually critical?

At one-loop,
dg

d`
= 0

This theory is also on a critical line.
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For g small, the perturbations λ1(Ea
i E

a
i )

2 + λ2
(
Ea

i E
a
j

)2

have runaway flows. This presumably corresponds
to d ≥ 2. The classical limit is massive, as in the
q-state Potts/O(n) models.

If the conjecture is correct, then for g sufficiently
large, these become irrelevant, and in this regime
we expect

〈W [γ]〉 = d〈
tr

(
Ei(x) Pei

∫ x
0 a Ej(0) Pei

∫ 0
xa

)〉
∼ 1
|x|η2

δij
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Future Directions

With the pictorial-combinatorial description of
topological phases in hand, there are many open
questions which one hopes to address.

• Electrons, topology, statistical mechanics, gauge
theories ... computer science.

• The pictorial representation motivates certain
types of microscopic models.
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Perturbing away from soluble models, towards
more realistic ones.

• Imposing the Jones-Wenzl relations.

• Stability of d-isotopy critical line.
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