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Remarks on NNLO QCD approximation

The NNLO QCD approximation is an expansion of the leading twist contribution to proton 
proton scattering  in the strong coupling constant. The twist expansion itself is quite separate 
and rarely discussed approximation.

Continuous increase in the ``number of N’s’’ is not possible without hitting a non-perturbative 
boundary.   I do not know where this boundary is and what to do about  it, but an idea that 
one  can measure the W mass to 10 MeV ( 0.01 percent) or the top quark mass to better 
than 500 MeV (0.3 percent)  without addressing non-perturbative effects theoretically from 
first principles seems disturbing to me. 
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Introduction

● The goal of hadron collider physics program (Tevatron, LHC) is to discover and study 

physics beyond the Standard Model in the  mass range 100 GeV - few TeV 

● To produce that heavy final states, we require rare short-distance processes where both 

protons disintegrate and all momenta transfers are large. These processes can be 

understood using factorization and asymptotic freedom.

● A major role in  such an understanding  is played by parton-parton scattering that is 

described by  perturbative QCD.
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d� =

Z
dx1dx2fi(x1)fj(x2)d�part(x1x2shadr)

?

For the purposes of describing hard processes at colliders,  NNLO is better than NLO that 
is better than LO that is better than a parton shower.  
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 Existence of a NNLO calculation for a process does not imply that any observable 
computed using a particular ``NNLO’’ code has the NNLO accuracy ( pt of the Z in 
NNLO Drell-Yan, pt of the top pair in NNLO tT production etc.).  Sometimes NLO to a 
higher multiplicity process is more useful than NNLO to a lower multiplicity process. 

NNLO >= 2 loops !

Figure 8. As for figure 7, but for the transverse momentum of the photon pair, p��T .
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Figure 9. As for figure 7, but for the azimuthal angle between the two photons, ���� .

themselves in the m�� spectrum. In particular a recent observation of an excess around
750 GeV in the ATLAS experiment [16], with a smaller excess in the same region reported
by CMS [17], has caused considerable excitement in the theoretical community. In these
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real
corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO

+��NLO ,

�NNLO
�� = �NLO

+��NNLO
= �LO

+��NLO
+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real
corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO

+��NLO ,

�NNLO
�� = �NLO

+��NNLO
= �LO

+��NLO
+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made
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Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [57]), real-virtual and real-real
corrections.

LHC phenomenology, comparing our predictions to data obtained by the CMS experiment
at 7 TeV, and to the m�� spectrum reported by ATLAS at 13 TeV. Finally, we draw our
conclusions in section 5. Appendices A, B and C contain additional technical details of our
calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO

+��NLO ,

�NNLO
�� = �NLO

+��NNLO
= �LO

+��NLO
+��NNLO . (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory. We use this notation both inclusively (as written
above) and for differential predictions.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref. [57], for the real-virtual in ref. [58], and tree-level amplitudes for the real-real
can be found in ref. [59].

After UV renormalization the individual component pieces of the calculation still con-
tain singularities of infrared (IR) origin. These infrared poles must be regulated, made
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For larger values of µ
R

> mH, however, as(µ2
R

) falls down
suppressing the logarithmic contributions and hence the
cross sections will decrease monotonically. We have also
plotted the RESUM cross sections at various orders in
Fig. 2 as a function of µ

R

. We find that the predictions
from the RESUM cross sections are more stable com-
pared to the FO ones over a wide range of µ

R

demon-
strating the power and the reliability of resummation.
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FIG. 2: µR dependence of both the fixed order and resummed
cross sections up to N3LO.

LO NLO NNLO N3LO

FO (%) 167.26 143.40 54.99 27.01

RESUM (%) 6.11 5.47 3.39 1.23

TABLE I: Percentage of maximum uncertainty for µR varia-
tion in the range [0.1mH, 10mH] up to N3LO (see text).

In Table I, we show the maximum percentage of uncer-
tainty in the cross sections up to N3LO for µ

R

variation
in the range [0.1mH, 10mH]. Here, at N3LO, the µ

R

un-
certainty is maximum for µ

R

between about 0.1mH and
0.5mH whereas at NNLO, the maximum uncertainty is
for µ

R

between about 0.2mH and 10mH. We notice that
the scale uncertainties in both FO and RESUM cross sec-
tions decrease with the order of the perturbation theory,
as expected.

We also study the scale uncertainties of both the FO
and RESUM cross sections up to N3LO as a function of
the center of mass energy

p
s of the incoming protons

at the LHC and our results are given in fig.3. Here, we
vary µ

R

in the range [0.1mH, 10mH] fixing µ

F

= mH. In
general, the scale uncertainties in both FO and RESUM
results are found to increase with

p
s precisely because

of the increase in gluon fluxes. Irrespective of the order
of the perturbation theory, the RESUM results are found
to decrease the scale uncertainties remarkably compared

to the FO results. Here, at N3LO, the cross sections will
increase from µ

R

= 0.1mH to about µ
R

= 0.5mH ( shown
as solid lines in the Fig.3, the dashed line corresponds to
the one at µ

R

= 10mH) and then start decreasing with
further µ

R

variation. Also for µ
R

> mH, the N3LO cross
section will decrease. Consequently for N3LO, the cross
sections at the end points of the µ

R

variation i.e. 0.1mH

and 10mH, will both be below the one at µ
R

= mH.
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FIG. 3: Dependence of scale uncertainties in both the fixed
order and resummed cross sections on

p
s (see text).

In conclusion, we have investigated the dependence of
both the fixed order as well as the resummed predictions
on the renormalization scale, using the recently available
results on the Higgs boson production to N3LO in gluon
fusion. For the resummed results, we systematically in-
clude all the RG accessible logarithms, L

R

, to all orders
in the perturbation theory. While the fixed order N3LO
result shows impressive scale reduction for the canonical
choice of the renormalization scale between mH/2 and 2
mH, there is still a significant dependence on the scale
through these large logarithms which can spoil the be-
havior if the renormalization scale is varied further away
from this range. On the other hand, the resummed re-
sults obtained in this letter show little dependence on
the scale choice. For µ

R

in the range [0.1mH, 10mH], the
RG improved cross sections bring the scale uncertainties
from about 27% down to about 1.5% at N3LO level. This
approach can also be used for other processes such as top
pair production, multi-jet production etc.
Acknowledgments : We thank Nandadevi cluster com-
puting facility at the Institute of Mathematical Sciences
(IMSc) where the computation was carried out. GD
thanks for the hospitality provided by IMSc where part
of the work was done. GD also thanks P. Mathews for
useful discussions and for his encouragement.

NNLO computations are fairly insensitive to scale choices, at least in the region where 
NNLO is at work.  Too much of a scale choice game can be counter-productive since 
scale variation uncertainty is one of the few handles we have to understand how  
relevant of higher order corrections. 

Scales 
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In conclusion, we have investigated the dependence of
both the fixed order as well as the resummed predictions
on the renormalization scale, using the recently available
results on the Higgs boson production to N3LO in gluon
fusion. For the resummed results, we systematically in-
clude all the RG accessible logarithms, L

R

, to all orders
in the perturbation theory. While the fixed order N3LO
result shows impressive scale reduction for the canonical
choice of the renormalization scale between mH/2 and 2
mH, there is still a significant dependence on the scale
through these large logarithms which can spoil the be-
havior if the renormalization scale is varied further away
from this range. On the other hand, the resummed re-
sults obtained in this letter show little dependence on
the scale choice. For µ
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There seems to be a close proximity of resummed  and fixed order computations for 
realistic selection criteria at the LHC. We are in the ``grey’’ region where both approaches 
can be used for  reasonable estimates of radiative corrections, provided that we can reach 
sufficiently high orders in the strong coupling expansion.  

The main advantage of fixed-order computations is the possibility to compute fiducial cross 
sections for realistic selection criteria. 

The main advantage of resummed computations is that they can be continued to regions 
where fixed order computations fail. This is good but we rarely need those regions for 
anything but the consistency checks of the SM. 

Remarks on NNLO QCD approximation

De Florian et al.
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dijets O(3%) gluon-gluon, gluon-quark PDFs, strong couplings, BSM

H+0 jet O(3-5 %) fully inclusive (N3LO ) Higgs couplings

H+1 jet O(7%) fully exclusive; Higgs 
decays, infinite mass tops

Higgs couplings, Higgs pt, structure for the 
ggH vertex.

tT pair O(4%) fully exclusive, stable tops top cross section, mass, pt, FB asymmetry, 
PDFs, BSM

single top O(1%) fully exclusive, stable tops, 
t-channel Vtb, width, PDFs

WBF O(1%) exclusive, VBF cuts Higgs couplings

W+j O(1%) fully exclusive, decays PDFs

Z+j O(1-3%) decays, off-shell effects PDFs

ZH O(3-5 %) decays to bb at NLO Higgs couplings (H-> bb)

ZZ O(4%) fully exclusive Trilinear gauge couplings, BSM

WW O(3%) fully inclusive Trilinear gauge couplings, BSM

top decay O(1-2 %) exclusive Top couplings

H -> bb O(1-2 %) exclusive, massless Higgs couplings, boosted

Processes currently known through NNLO

Saturday, February 27, 16



Ingredients for NNLO computations
A NNLO QCD computation is, essentially,  a two-loop computation. However, in theories 
with massless particles, two-loop computations are insufficient for obtaining a physical 
answer: two-loop computations need to be combined with contributions of higher-
multiplicity processes to physical observables. 

Suppose we want to  compute the NNLO QCD correction to a process pp -> X .  To do 
this, we need:

a) two-loop scattering amplitudes for a process X ;

b) one-loop amplitudes for a process X+g;

d) tree-level amplitudes for a process X+gg, X+qQ etc. 

Computation of two-loop scattering amplitudes is a significant challenge; 

Integration of tree-level amplitudes over available phase-space requires some procedure that 
allows an extraction of infra-red  divergences ( subtraction/slicing techniques). 

One-looop amplitudes need to be known in  an unresolved region; although one loop 
computations are ``standard’’ by now, they are not easy especially in unresolved regions.

Thursday, April 7, 16



What is the width of the Higgs boson?

�i!H!f ⇠
g2i g

2
f

�H

g

g

H
�

�

g ! ⇠g, �H ! ⇠4�H ) �H ! �H

Although many properties of the Higgs bosons appear to be consistent with the Standard 
Model,  reaching this conclusion requires hidden assumptions. One of such assumptions 
is the Standard Model value of the Higgs boson width. 

The on-shell production cross section is invariant under a simultaneous change  of the 
couplings and the width, resulting  in infinitely many  solutions.  To break the degeneracy, one 
should find the way to measure the couplings and the width independently of each other. 

Tuesday, March 8, 16



Couplings from off-shell production
One can try to measure the couplings of the Higgs boson when it is produced off-shell.  The 
off-shell cross-section is proportional to Higgs couplings and is independent of the width; this 
resolves  the width/couplings ambiguity. 

The immediate problem with this idea is 
that off-shell contribution to Higgs boson 
production is expected to be extremely 
small.  

However,  Kauer and Passarino pointed 
out that a significant enhancement in the 
off-shell Higgs production rate exists, 
making the invariant mass distribution 
very different from the expected Breit-
Wigner shape.
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Figure 15. MZZ distributions for gg → H → ZZ → !!̄ν!ν̄! for MH = 125GeV. Applied cuts:
pT ! > 20GeV, |η!| < 2.5, 76GeV < M!! < 106GeV, p/T > 10GeV. Other details as in Fig. 4.

gg (→ H) → ZZ → !!̄ν!ν̄!

σ [fb], pp,
√
s = 8TeV, MH = 125GeV ZWA interference

MT cut HZWA Hoffshell cont |Hofs+cont|2 R0 R1 R2

none 0.1593(2) 0.2571(2) 1.5631(7) 1.6376(9) 0.6196(7) 0.8997(6) 0.290(5)

MT1 < MH 0.1593(2) 0.1625(2) 0.4197(5) 0.5663(6) 0.980(2) 0.973(2) 0.902(5)

Table 6. Cross sections for gg (→ H) → ZZ → !!̄ν!ν̄! for MH = 125GeV without and with
transverse mass cut. Applied cuts: pT ! > 20GeV, |η!| < 2.5, 76GeV < M!! < 106GeV, p/T >
10GeV. Other details as in Table 3.

4 Conclusions

In the Higgs search at the LHC, a light Higgs boson is not excluded by experimental data.

In the mass range 115GeV ! MH ! 130GeV, one has ΓH/MH < 10−4 for the SM Higgs

boson. We have shown for inclusive cross sections and cross sections with experimental

selection cuts that the ZWA is in general not adequate and the error estimate O(ΓH/MH)

is not reliable for a light Higgs boson. The inclusion of off-shell contributions is essential

to obtain an accurate Higgs signal normalisation at the 1% precision level. We have traced

this back to the dependence of the decay (and to a lesser degree production) matrix element

on the Higgs virtuality q2. For the H → WW,ZZ decay modes we find that above the

weak-boson pair production threshold the (q2)2 dependence of the decay matrix element

compensates the q2-dependence of the Higgs propagator, which results in a significantly

enhanced off-shell cross section in comparison to the ZWA cross section, when this phase

– 18 –

Kauer, Passarino

BW

True Higgs shape
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Higgs decays to ZZ
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Figure 3: MZZ distributions for gg (→ H) → ZZ → !!̄ν!ν̄! for MH = 125GeV. Applied
cuts: pT ! > 20GeV, |η!| < 2.5, 76GeV < M!! < 106GeV, p/T > 10GeV. Other details as
in Fig. 2.

H
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g

q

V

V

q̄

q

V

V

g

g

q

V

V

Figure 4: Representative Feynman graphs for the Higgs signal process (left) and the qq̄-
(center) and gg-initiated (right) continuum background processes.

cesses in Refs. [81–87].15 Due to the enhanced Higgs cross section above the V V threshold,
integrated cross sections can be affected by O(10%) signal-background interference effects,
which are hence also displayed in Figs. 2 and 3.

In the vicinity of the Higgs resonance, finite-width and Higgs-continuum interference
effects are negligible for gg (→ H) → V V if MH # 2MV , as shown in Fig. 5 for gg (→
H) → W−W+ → !ν̄!!̄ν!. For weak boson decays that permit the reconstruction of the
Higgs invariant mass, the experimental procedure focuses on the Higgs resonance region
and for MH # 2MV the enhanced off-shell region is thus typically excluded.

For H → V V channels that do not allow to reconstruct the Higgs invariant mass, the
tail contribution can nevertheless be reduced significantly by means of optimized selection
cuts. In Table 1, we demonstrate this for gg (→ H) → W−W+ → !ν̄!!̄ν!. Here, the

15For studies of the qq̄ and gg continuum background (see Fig. 4, center and right), we refer the reader
to Refs. [88–95] and references therein.

9

�H(mZZ > 160 GeV) ⇡ 0.1 �H

H

g

g Kauer, Passarino

Caola, K.M.

Kauer, Passarino

In this case, the off-shell rate  appears to be significant because  decay to two on-shell Z bosons 
opens up and because the cross-section for producing two longitudinally polarized Z bosons in 
decays of (strongly) off-shell Higgs is large.

For large invariant masses of the Z boson pair, the amplitude  divided by the Higgs propagator 
becomes  independent of ZZ invariant mass, enhancing the off-shell production significantly.  
Numerically, the off-shell production cross section  is really significant; it is close to ten percent 
of the resonance cross-section. 

AH⇤!ZLZL ⇠ s

v

One can use this enhancement in the off-shell Higgs production to resolve the couplings/width 
degeneracy.   The cleanest final state  is  ZZ (four leptons), so it is natural to look there. 

|AH⇤!ZLZL |2

(s�m2
h)

2
+m2

h�
2
h

! const, s � m2
h

Wednesday, January 6, 16



The Higgs width constraint:  CMS

CMS collaboration measured the number of 4-lepton events in the off-shell region and used  it 
to constrain the Higgs width.  The measurement includes both ZZ and WW channels.

6

Table 1: Expected and observed numbers of events in the 4` and 2`2n channels in gg-enriched
regions, defined by m4` � 330 GeV and Dgg > 0.65 (4`), and by mT> 350 GeV and Emiss

T >
100 GeV (2`2n). The numbers of expected events are given separately for the gg and VBF pro-
cesses, and for a SM Higgs boson (GH = GSM

H ) and a Higgs boson width of GH = 10 ⇥ GSM
H . The

unphysical expected contributions for the signal and background components are also reported
separately, for the gg and VBF processes. For both processes, the sum of the signal and back-
ground components differs from the total due to the negative interferences. The parameters
are set to µ = µggH = µVBF = 1.

4` 2`2n

(a) total gg (GH = GSM
H ) 1.8±0.3 9.6±1.5

gg signal component (GH = GSM
H ) 1.3±0.2 4.7±0.6

gg background component 2.3±0.4 10.8±1.7
(b) total gg (GH = 10 ⇥ GSM

H ) 9.9±1.2 39.8±5.2
(c) total VBF (GH = GSM

H ) 0.23±0.01 0.90±0.05
VBF signal component (GH = GSM

H ) 0.11±0.01 0.32±0.02
VBF background component 0.35±0.02 1.22±0.07

(d) total VBF (GH = 10 ⇥ GSM
H ) 0.77±0.04 2.40±0.14

(e) qq background 9.3±0.7 47.6±4.0
(f) other backgrounds 0.05±0.02 35.1±4.2

(a+c+e+f) total expected (GH = GSM
H ) 11.4±0.8 93.2±6.0

(b+d+e+f) total expected (GH = 10 ⇥ GSM
H ) 20.1±1.4 124.9±7.8

observed 11 91

between the low- and high-mass regions.

Among the signal uncertainties, experimental systematic uncertainties are evaluated from ob-
served events for the trigger efficiency (1.5%), and combined object reconstruction, identifica-
tion and isolation efficiencies (3–4% for muons, 5–11% for electrons) [7]. In the 2`2n final state,
the effects of the lepton momentum scale (1–2%) and jet energy scale (1%) are taken into ac-
count and propagated to the evaluation of Emiss

T . The uncertainty in the b-jet veto (1–3%) is
estimated from simulation using correction factors for the b-tagging and b-misidentification
efficiencies as measured from the dijet and tt decay control samples [38].

Theoretical uncertainties in the qq background contribution are within 4–10% depending on
mZZ [7]. The systematic uncertainty in the normalization of the reducible backgrounds is
evaluated following the methods described in Refs. [7, 16]. In the 2`2n channel, for which
these contributions are not negligible at high mass, the estimation from control samples for
the Z+jets and for the sum of the tt, tW and WW contributions leads to uncertainties of 25%
and 15% in the respective background yields. Theoretical uncertainties in the high mass contri-
bution from the gluon-induced processes, which affect both the normalization and the shape,
are especially important in this analysis (in particular for the signal and interference contri-
butions that are scaled by large factors). However, these uncertainties partially cancel when
measuring simultaneously the yield from the same process in the on-shell signal region. The
remaining mZZ-dependent uncertainties in the QCD renormalization and factorization scales
are derived using the K factor variations from Ref. [14], corresponding to a factor of two up
or down from the nominal mZZ/2 values, and amount to 2–4%. For the gg ! ZZ continuum
background production, we assign a 10% additional uncertainty on the K factor, following
Ref. [22] and taking into account the different mass ranges and selections on the specific final

ΓH < 5.4 ΓH,SM = 22 MeV @ 95CL

A very impressive result -- almost  two orders of magnitude improvement compared 
to the direct ( on peak) bound of the width. 
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New predictions for background processes 
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FIG. 2: The di↵erential cross section as a function of four-lepton invariant mass for 2e2µ events

before event selections. Results are shown for pure O1, O2, O3, O4, and O5 couplings (cf. Eq. (14)),

as well as for the irreducible qq̄ ! ZZ ! 2e2µ background (bg). There is no event selection

applied to the signal events; for the background, a minimal Mll̄ > 1 GeV selection is applied to

avoid infrared divergences. For each signal hypothesis, the normalization has been chosen to be

equal to the entire SM on-peak Higgs boson cross section in this channel. In this figure, the ggX

coupling is taken to be constant with respect to invariant mass.

ant masses are provided in Table III. We note from this table, and from Figs. 2 and 3

above, that �2�5 are significantly larger than �1, the SM o↵-shell cross section, though the

overall scale of cross sections is relatively small, with the exception of �4. While, as noted

above, we cannot translate these observations directly into a sensitivity, largely because of

the importance of interference with the gg ! ZZ continuum background, it is clear that

the o↵-shell cross sections provide a source of information about the tensor XZZ couplings

that is complementary to data obtained on the Higgs boson mass peak. As the large values

of �4 are symptomatic of potential unitarity-violating behavior, in Subsection IVC we will
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Table 1: Expected and observed numbers of events in the 4` and 2`2n channels in gg-enriched
regions, defined by m4` � 330 GeV and Dgg > 0.65 (4`), and by mT> 350 GeV and Emiss

T >
100 GeV (2`2n). The numbers of expected events are given separately for the gg and VBF pro-
cesses, and for a SM Higgs boson (GH = GSM

H ) and a Higgs boson width of GH = 10 ⇥ GSM
H . The

unphysical expected contributions for the signal and background components are also reported
separately, for the gg and VBF processes. For both processes, the sum of the signal and back-
ground components differs from the total due to the negative interferences. The parameters
are set to µ = µggH = µVBF = 1.

4` 2`2n

(a) total gg (GH = GSM
H ) 1.8±0.3 9.6±1.5

gg signal component (GH = GSM
H ) 1.3±0.2 4.7±0.6

gg background component 2.3±0.4 10.8±1.7
(b) total gg (GH = 10 ⇥ GSM

H ) 9.9±1.2 39.8±5.2
(c) total VBF (GH = GSM

H ) 0.23±0.01 0.90±0.05
VBF signal component (GH = GSM

H ) 0.11±0.01 0.32±0.02
VBF background component 0.35±0.02 1.22±0.07

(d) total VBF (GH = 10 ⇥ GSM
H ) 0.77±0.04 2.40±0.14

(e) qq background 9.3±0.7 47.6±4.0
(f) other backgrounds 0.05±0.02 35.1±4.2

(a+c+e+f) total expected (GH = GSM
H ) 11.4±0.8 93.2±6.0

(b+d+e+f) total expected (GH = 10 ⇥ GSM
H ) 20.1±1.4 124.9±7.8

observed 11 91

between the low- and high-mass regions.

Among the signal uncertainties, experimental systematic uncertainties are evaluated from ob-
served events for the trigger efficiency (1.5%), and combined object reconstruction, identifica-
tion and isolation efficiencies (3–4% for muons, 5–11% for electrons) [7]. In the 2`2n final state,
the effects of the lepton momentum scale (1–2%) and jet energy scale (1%) are taken into ac-
count and propagated to the evaluation of Emiss

T . The uncertainty in the b-jet veto (1–3%) is
estimated from simulation using correction factors for the b-tagging and b-misidentification
efficiencies as measured from the dijet and tt decay control samples [38].

Theoretical uncertainties in the qq background contribution are within 4–10% depending on
mZZ [7]. The systematic uncertainty in the normalization of the reducible backgrounds is
evaluated following the methods described in Refs. [7, 16]. In the 2`2n channel, for which
these contributions are not negligible at high mass, the estimation from control samples for
the Z+jets and for the sum of the tt, tW and WW contributions leads to uncertainties of 25%
and 15% in the respective background yields. Theoretical uncertainties in the high mass contri-
bution from the gluon-induced processes, which affect both the normalization and the shape,
are especially important in this analysis (in particular for the signal and interference contri-
butions that are scaled by large factors). However, these uncertainties partially cancel when
measuring simultaneously the yield from the same process in the on-shell signal region. The
remaining mZZ-dependent uncertainties in the QCD renormalization and factorization scales
are derived using the K factor variations from Ref. [14], corresponding to a factor of two up
or down from the nominal mZZ/2 values, and amount to 2–4%. For the gg ! ZZ continuum
background production, we assign a 10% additional uncertainty on the K factor, following
Ref. [22] and taking into account the different mass ranges and selections on the specific final

To verify the consistency of the off-shell production regime with the Standard Model nature 
of the Higgs boson as precisely as possible, we need to predict the  number of four-lepton 
events at high ZZ-invariant mass accurately. 

To understand what precision is needed, it is instructive to keep in mind  that  in the current 
(8 TeV)  4-lepton analysis, CMS expects 11 off-shell events in the SM and that 1 event, out 
of these 11,  is caused by the off-shell Higgs boson, 2 event are caused by gg -> ZZ and -1 
event by the interference. The rest is qqb -> ZZ.    

This implies that if we want to constrain the couplings to O(20%) (and the width within a 
factor of two), O(10%) prediction for qq->ZZ and O(50%) prediction for gg ->ZZ is 
required.  This was an important challenge but we have almost reached it !
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NNLO QCD predictions for the background

NNLO QCD predictions for ZZ production require computation of complicated two-loop 
scattering amplitudes.

Z

Z

Z

Z

These are computed using the standard steps that include:   parametrization of 
amplitudes in terms of Lorentz-invariant form factors;  reduction to master integrals 
followed by the calculation of master integrals. 

Interestingly, with these standard procedures, we are  getting to the point were these 
computations become hardly manageable ( the amplitude depends on four kinematic 
invariants). 
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gg -> VV scattering amplitude

g2

g1 V1

V2

q = u, d...

g2

g1 V1

V2

q = u, d...

As an illustration, consider computation of a two-loop gg -> VV amplitude.  For generic 
vector bosons, the amplitude can be written in a form with all electroweak couplings 
factored out ( massless quarks only)

M(�g1 ,�g2 ,�5,�7) = i

✓
gWp
2

◆4

�a1a2D3D4C
�7
l,V2

C�5
l,V1

✏µ3 (�5)✏
⌫
4(�7) CV1V2 Aµ⌫(p

�g1
1 , p

�g2
2 ; p3, p4),

CL,R
� = �

p
2Ql sin ✓W , CL,R

l,Z =

1p
2 cos ✓W

(Vl ±Al) , C�
lW+ = C�

lW� = ��L.

Ve = �1/2 + 2 sin2 ✓W , V⌫ = 1/2, Ae = �1/2, A⌫ = 1/2

C�� =

20 sin ✓2W
9

, CZZ =

�
V 2
u + V 2

d +A2
u +A2

d

�

cos ✓2W
, CZ� = �2 sin ✓W

cos ✓W
(VuQu + VdQd) , CW+W�

= 1,

Couplings to leptons and quarks  are shown below; note the absence of vector-axial 
current correlators (C-parity) and the equality of the vector-vector and axial-axial 
current correlators.

The primary object to compute  is the amplitude A(p1,p2,p3,p4) contracted with the polarization vectors of 
vector bosons.  Only vector couplings of electroweak bosons are needed.
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gg -> VV scattering amplitude
The problem with computing the amplitude A(p1,p2,p3,p4) ``as is’’ is that it is too 
complicated at two-loops. Indeed,  integration-by-parts technology can not be used 
efficiently if there are many external vectors ( vector boson polarizations and/or lepton 
momenta) in the calculation.

A = T1 (✏1 · ✏2) (✏3 · ✏4) + T2 (✏1 · ✏3) (✏2 · ✏4) + T3 (✏1 · ✏4) (✏2 · ✏3)
+ (✏1 · ✏2) (T4(p1 · ✏3) (p1 · ✏4) + T5(p1 · ✏3) (p2 · ✏4) + T6(p2 · ✏3) (p1 · ✏4) + T7(p2 · ✏3) (p2 · ✏4))
+ (✏1 · ✏3) (p? · ✏2) (T8(p1 · ✏4) + T9 (p2 · ✏4)) + (✏1 · ✏4) (p? · ✏2) (T10(p1 · ✏3) + T11 (p2 · ✏3))
+ (✏2 · ✏3) (p? · ✏1) (T12(p1 · ✏4) + T13 (p2 · ✏4)) + (✏2 · ✏4) (p? · ✏1) (T14(p1 · ✏3) + T15 (p2 · ✏3))
+ (✏1 · p?) (✏2 · p?) (T17(p1 · ✏3) (p1 · ✏4) + T18(p1 · ✏3) (p2 · ✏4) + T19(p2 · ✏3) (p1 · ✏4)
+T20(p2 · ✏3) (p2 · ✏4)) + (✏3 · ✏4) (p? · ✏1) (p? · ✏2)T16

To remove all external vectors, we need to express the amplitude through invariant form 
factors.  If this is done without imposing reasonable physics conditions, the number of 
form factors becomes very large, O(150) !

✏1 · p1,2 = 0, ✏2 · p1,2 = 0, ✏3 · p3 = 0, ✏4 · p4 = 0.Using transversality and gauge-fixing conditions   

The invariant form-factors T1-T20  are functions of Mandelstam variables only;  if we 
construct operators that project A -> Ti=1..16 , we are able to apply integration-by-parts  
technology without much problem.

The transverse momentum is defined through the Sudakov decomposition w.r.t p1 and p2.

we express the amplitude through just 20 form factors.
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gg -> VV scattering amplitude
It is relatively straightforward to construct such projection operators ( their choices 
are by far not unique).  We start by defining an auxiliary object (note projections on
physical polarizations)

Oµ1µ2µ3µ4 = Ā⌫1⌫2⌫3⌫4P⌫1µ1
12 P⌫2µ2

12 P⌫3µ3
3 P⌫4µ4

4 .

Pµ⌫
12 = �gµ⌫ +

pµ1p
⌫
2 + p⌫1p

µ
2

p1 · p2
, Pµ⌫

3 = �gµ⌫ +
pµ3p

⌫
3

p23
, Pµ⌫

3 = �gµ⌫ +
pµ4p

⌫
4

p24
.

We then contract it with various vectors and tensors and find a mapping G1..20 -> T1..20 
G1 = Oµ1µ2µ3µ4gµ1µ2gµ3µ4 , G2 = Oµ1µ2µ3µ4gµ1µ3gµ2µ4 ,

G3 = Oµ1µ2µ3µ4gµ1µ4gµ2µ3 , G4 = p�4
? s�2Op?p?p1p1 ,

G5 = p�4
? s�2Op?p?p1p2 , G6 = p�4

? s�2Op?p?p2p1 ,

G7 = p�4
? s�2Op?p?p2p2 , G8 = 4p�6

? s�2Op?p?µ3µ4tµ3µ4 ,

G9 = 4p�6
? s�6Oµ1µ2p1p1tµ1µ2 , G10 = 8p�4

? s�3Op?µ2µ3p1tµ2µ3 ,

G11 = 4p�6
? s�3Op?µ2µ3p?tµ2µ3 , G12 = 8p�4

? s�3Oµ1p?p1µ4tµ1,µ4 ,

G13 = 4p�6
? s�3Oµ1p?p?µ4tµ1,µ4 , G14 = 8p�4

? s�3Oµ1p?µ3p2tµ1,µ3 ,

G15 = 4p�6
? s�3Oµ1p?µ3p?tµ1,µ3 , G16 = 8p�4

? s�3Op?µ2p1µ4tµ2,µ4 ,

G17 = 4p�6
? s�3Op?µ2p?µ4tµ2,µ4 , G18 = 4p�6

? s�6Oµ1µ2p1p2tµ1µ2 ,

G19 = 4p�6
? s�6Oµ1µ2p2p1tµ1µ2 , G20 = 4p�6

? s�6Oµ1µ2p2p2tµ1µ2 .

tµ1
⌫1

= �µ1p1p2p?
⌫1p1p2p?

= �µ1µ2µ3µ4
⌫1⌫2⌫3⌫4

p⌫2
1 p⌫3

2 p⌫4
? p1,µ2p2,µ3p?,µ4 �µ1µ2µ3µ4

⌫1⌫2⌫3⌫4
= det|gµi2{1...4}

⌫j2{1..4} |.
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gg -> VV scattering amplitude

It turns out that it is easier to construct helicity amplitudes from projections that we 
just described;  one requires just two independent helicity amplitudes (polarizations 
of  gluons are  either the same or different); each amplitude is expressed in terms of 
nine form factors.   Vector boson polarization vectors are 

A�1�2
3L4L =N�1�2

n⇣

F�1�2
1 h15i[61] + F�1�2

2 h25i[62]
⌘

h17i[81]

+
⇣

F�1�2
3 h15i[61] + F�1�2

4 h25i[62]
⌘

h27i[82] + 2F�1�2
5 h57i[86]

+
1

2

⇣

F�1�2
6 h15i[61] + F�1�2

7 h25i[62]
⌘⇣

h12ih78i[81][82] + h17ih27i[21][87]
⌘

� 1

2

⇣

F�1�2
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9 h27i[82]
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h12ih56i[61][62] + h15ih25i[21][65]
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✏µ3 = h5|�µ|6], ✏µ4 = h7|�µ|8].

Examples of  relations between F and G form factors are shown below. Note 
that no spurious d-4 singularities are present in these relations !
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gg -> VV scattering amplitude

As the result, it appears that  form factors can be computed in a straightforward way. We 
need to:  

1) generate diagrams (QGRAPH); 
2) project on relevant operators (Form);
3)  express the result in terms of various two-loop  four-point integrals  (Form) ;
4) apply integration-by-parts identities to reduce these integrals to  master integrals (FIRE); 
5) combine the results into  physical form factors;
6)  write a numerical program (Fortran,C++) that can turn the analytic formulas into numbers;

Even if every step  sounds straightforward, most of  them  are non-trivial and demanding.  A 
particular problem is the size of expressions that affects both reduction to master integrals
and procession of  the final expressions.   For example, the size of Fortran files ( not 
executables) for the final two-loop amplitude gg -> VV is O(100 MB) !)

The remaining problem to address is the computation of master integrals and this is what we 
will  discuss now.
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Two-loop virtual corrections:  example of qq->V1V2 

For the case of double vector boson production,  we 
can identify  six different two-loop topologies; the 
differential equations can be ``rationalized’’ with the 
appropriate change of variables and then solved in 
terms of the so-called Goncharov polylogarithms.

s

m

2
3

= (1 + x)(1 + xy),

t

m

2
3

= �xz,

m

2
4

m

2
3

= x

2
y

q
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2
3 �m

2
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2 � 4m2
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2
4 = m

2
3x(1� y)

d~f = ✏(dA)⇥ f, A =

X
Ai log↵i

↵ = {x, y, z, 1 + x, 1� y, 1 + xy, z � y, 1 + y(1 + x)� z,

xy + z, 1 + x(1 + y � z), 1 + xz,

1 + y � z, z + x(z � y) + xyz, z � y + yz + xyz}

G(an, an�1, . . . , a1, t) =

tZ

0

dtn
tn � an

G(an�1, . . . a1, tn)

Important  and difficult issues:
  
1) finding a suitable basis;  
2) choice of ``rational variables’’; 
3) boundary conditions for differential equations;
4) analytic continuation from Euclidean to  Minskowski;
5) numerical evaluation of Goncharov’s polylogarithms;
6)  mapping G’s on conventional polylogarithms.

Caola, Henn, Melnikov, Smirnov, Smirnov
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Two-loop calculations: amplitudes and integrals

1) Calculation of master integrals using differential equations in kinematic variables is 
now a method of choice. It has benefited from an understanding of how the bookkeeping in  
such calculations can be streamlined by choosing appropriate master integrals and working 
with  particular special functions.   

2)  We are able to successfully study  master integrals with up to 4 kinematic invariants and 
there are indications that even larger number of kinematic invariants can be dealt with.    

3) Internal masses is a big challenge since they introduce new special functions whose 
properties are currently being exploired. 

4) There are interesting attempts to understand if two-loop computations can be done using 
unitarity techniques,  that turned out to be so powerful at one-loop.  While there was an 
impressive progress in this field related to classification of integrand residuals based on 
techniques from algebraic geometry,  there are still  many outstanding issues.  

Here are a few things that we learned recently about two-loop computations: 

Remiddi,  Kotikov, Henn, Papadopoulos

Gehrmann, Henn,  Tancredi, Caola, Smirnov(s), Papadopoulos, Tommasini, Wever

Badger, Frellesvig, Zhang, Mastrolia,  Ita

Weinzierl, Tancredi, Remiddi
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Z-boson pair production: quark annihilation

The fully-differential production of two Z-bosons in quark-anti-quark annihilation was 
computed  through NNLO QCD, including off-shell effects and decays of the Z-bosons. 
  
The residual uncertainty on the cross section is estimated to be of the order of 3%; this 
should enable precise predictions for the ``background’’ for the determination of the 
Higgs boson width.  Note that  this calculation relies  on  the two-loop amplitudes for qq-
>V1V2  and uses the qt-subtraction scheme, to combine real and virtual corrections. 

M. Grazzini, S. Kallweit,   D. Rathlev
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Z-boson pair production: gluon annihilation
Gluon fusion into a pair of Z-bosons is  an irreducible background to Higgs production 
( the amplitudes interfere).   It starts at one-loop, so calculation of even NLO QCD 
corrections to it is highly non-trivial. 

 F. Caola,  K. Melnikov,  R. Rontsch, L.  Tancredi

Nevertheless,  the  NLO QCD corrections to gg -> ZZ production through massless quark 
loops were computed;   large perturbative corrections (70-90%) were  found and the 
residual uncertainty was estimated  to be close to 10 percent. 

Top quark loops perhaps  are not important for the cross-section but are likely to  be 
relevant for the interference with the Higgs.   Recent results for gg ->ZZ  cross-section in 
the approximation of the infinitely heavy top quark  indicate large (1.8) K-factor.

Dowling, Melnikov

MZZ

KNLO
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Example: exclusive/fiducial  Higgs cross sections
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Realistic cross sections
The Higgs boson couplings are extracted from cross sections that are subject to kinematic 
constraints on the final states.  This happens because detectors have only restricted angular 
coverage and because by selecting final states with particular kinematic properties, certain 
backgrounds can be significantly reduced.   

This, however, requires precision predictions for  exclusive/fiducial cross sections, including jet-
binning,  Higgs boson decays etc, making them highly non-trivial.   Without such predictions, 
the Higgs couplings can not be extracted from the LHC data with the ultimate precision.

Higgs production in association with jets

jetsN
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 Z+jets  W+jets
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ieiµ/iµieA
(*)WWAH

Table 8: Selection table for Njet = 0 in 8 TeV data. The observed (Nobs) and expected (Nexp) yields for

the signal (Nsig) and background (Nbkg) processes are shown for the (a) eµ+ µe and (b) ee+ µµ chan-

nels. The composition of Nbkg is given on the right. The requirements are imposed sequentially from

top to bottom. Energies, masses, and momenta are in units of GeV. All uncertainties are statistical.

(a) eµ+ µe channel

Selection Nobs Nbkg Nsig

Njet = 0 9024 9000± 40 172± 2
|∆φ"",MET |> π2 8100 8120± 40 170± 2
p""
T
> 30 5497 5490± 30 156± 2

m"" < 50 1453 1310± 10 124± 1
|∆φ"" |< 1.8 1399 1240± 10 119± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

4900± 20 370± 10 510± 10 310± 10 2440± 30 470± 10
4840± 20 360± 10 490± 10 310± 10 1690± 30 440± 10
4050± 20 290± 10 450± 10 280± 10 100± 10 320± 5
960± 10 110± 6 69± 3 46± 3 18± 7 100± 2
930± 10 107± 6 67± 3 44± 3 13± 7 88± 2

(b) ee+ µµ channel

Selection Nobs Nbkg Nsig

Njet = 0 16446 15600± 200 104± 1
|∆φ"",MET |> π2 13697 12970± 140 103± 1
p""
T
> 30 5670 5650± 70 99± 1

m"" < 50 2314 2390± 20 84± 1
pmiss
T,rel
> 45 1032 993± 10 63± 1

|∆φ"" |< 1.8 1026 983± 10 63± 1
frecoil < 0.05 671 647± 7 42± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

2440± 10 190± 5 280± 6 175± 6 12300± 160 170± 10
2430± 10 190± 5 280± 6 174± 6 9740± 140 160± 10
2300± 10 170± 5 260± 6 167± 5 2610± 70 134± 4
760± 10 64± 3 53± 3 42± 3 1410± 20 62± 3
650± 10 42± 2 47± 3 39± 3 200± 5 19± 2
640± 10 41± 2 46± 3 39± 3 195± 5 18± 2
520± 10 30± 2 19± 2 22± 2 49± 3 12± 1

Table 9: Selection table for Njet = 1 in 8 TeV data. More details are given in the caption of Table 8.

(a) eµ+ µe channel

Selection Nobs Nbkg Nsig

Njet = 1 9527 9460± 40 97± 1
Nb-jet = 0 4320 4240± 30 85± 1
Z→ ττ veto 4138 4020± 30 84± 1
m"" < 50 886 830± 10 63± 1
|∆φ"" |< 1.8 728 650± 10 59± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

1660± 10 270± 10 4980± 30 1600± 20 760± 20 195± 5
1460± 10 220± 10 1270± 10 460± 10 670± 10 160± 4
1420± 10 220± 10 1220± 10 440± 10 580± 10 155± 4
270± 4 69± 5 216± 6 80± 4 149± 5 46± 2
250± 4 60± 4 204± 6 76± 4 28± 3 34± 2

(b) ee+ µµ channel

Selection Nobs Nbkg Nsig

Njet = 1 8354 8120± 90 54± 1
Nb-jet = 0 5192 4800± 80 48± 1
m"" < 50 1773 1540± 20 38± 1
pmiss
T,rel
> 45 440 420± 10 21± 1

|∆φ"" |< 1.8 430 410± 10 20± 1
frecoil < 0.2 346 320± 10 16± 1

NWW NVV Ntt̄ Nt NZ/γ∗ NW+ jets

820± 10 140± 10 2740± 20 890± 10 3470± 80 60± 10
720± 10 120± 10 720± 10 260± 10 2940± 70 40± 10
195± 4 35± 2 166± 5 65± 3 1060± 10 20± 2
148± 3 21± 1 128± 5 52± 3 64± 4 5.1± 0.8
143± 3 20± 1 125± 5 51± 3 63± 4 4.5± 0.7
128± 3 17± 1 97± 4 44± 3 25± 2 3.1± 0.6

7.2 Statistical model and signal extraction

The statistical analysis uses the likelihood function L, the product of Poisson functions for each
signal and control region and Gaussian constraints, where the product is over the decay channels. In

the Poisson term for the signal region µ scales the expected signal yield, with µ = 0 corresponding to

22

Experimental analyses of Higgs decays to W-
bosons splits the Higgs signal according to jet 
multiplicities since systematic uncertainties in 
H+0 jets, H+1 jets and H+2 jets are very 
different.

Signal to background ratios in 
H+1 and H+2 jet bins are small, they are 
roughly 10 percent of the background

The signal significance in H+1jet is smaller, but 
not much smaller, than the significance in H+0 
jets

Thursday, May 2, 13
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FIG. 7: The 0-jet cross section for R = 0.4 and mH = 125GeV. On the left we show the NLLpT , NLL′
pT+NLO, and

NNLL′
pT+NNLO predictions. A good convergence and reduction of uncertainties at successively higher orders is observed. On

the right we compare our best prediction at NNLL′
pT+NNLO to the fixed NNLO prediction. The lower plots show the relative

uncertainty in percent for each prediction. On the lower left the lighter inside bands show the contribution from ∆resum only,
while the darker outer bands show the total uncertainty from adding ∆resum and ∆µ in quadrature.

ues for σ0(pcutT , R) with both theoretical uncertainties:

σ0(25GeV, 0.4) = 12.67± 1.22pert ± 0.46clust pb ,

σ0(30GeV, 0.5) = 13.85± 0.87pert ± 0.24clust pb . (74)

It is interesting to compare our results and uncertain-
ties for σ0 to the NNLL+NNLO results presented ear-
lier in Ref. [9]. Our results build on their results in a
few ways. In particular, our RG approach includes π2

resummation, our results are quoted as NNLL′ because
they go beyond NNLL by including the complete NNLO
singular terms in the fixed-order matching (which are the
correct boundary conditions for the N3LL resummation),
and finally we use a factorization based approach to un-
certainties, which also makes predictions for the correla-
tions between the different jet bins.
Comparing σ0 at pcutT = 25GeV and R = 0.4 our cen-

tral values agree with those in Ref. [9], and are well within
each other’s uncertainties. Our perturbative uncertainty
of 9.6% is a bit smaller than the 13.3% uncertainty for
σ0 of Ref. [9] which seems reasonable given the above

mentioned additions. One important ingredient in this
comparison is the inclusion of the π2 resummation which
improves the convergence of our results and decreases our
uncertainty. On the other hand, in Ref. [9] the central
scale is chosen to be µFO = mH/2 which also works in the
same direction, decreasing the uncertainty relative to the
choice µFO = mH . For the total cross section Ref. [9] has
a 7.4% uncertainty, whereas we have 6.9% uncertainty
using µFO = mH and including π2 resummation (see Ta-
ble II). From Table IV in appendix App. A we see that
our perturbative uncertainty for σ0(25GeV, 0.4) would
increase to 12.8% if the π2 resummation were turned off
(while still taking the central µFO = mH), and that at
this level the uncertainty would become comparable to
that of Ref. [9]. For pcutT = 30GeV and R = 0.5 our
central values remain perfectly compatible with Ref. [9],
and the uncertainties follow a pattern similar to the case
above.

Banfi, Zanderighi, Salam; Tackmann, Zuberi, Walsh; Becher, Neubert 

Jet binning requires jet identification; this may introduce perturbative computations unstable; 
attempts to resum logarithmically enhanced terms.
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Higgs production: jet-binned cross sections
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Figure 1: Cancellation of 1/✏ poles in the qg channel. Note
that individual contributions have been rescaled by a factor
of 0.1, while the sum of them is not rescaled.

detail in our previous work on Higgs plus jet production
in pure gluodynamics [9], we only sketch here the salient
features of the calculation. We then present the numer-
ical results of the computation including NNLO results
for cross sections of Higgs plus jet production at various
collider energies and for various values of the transverse
momentum cut on the jet. We also discuss the NNLO
QCD corrections to the transverse momentum distribu-
tion of the Higgs boson. Finally, we present our conclu-
sions.

We begin by reviewing the details of the computation.
Our calculation is based on the e↵ective theory obtained
by integrating out the top quark. For values of the Higgs
p
?

below 150 GeV, this approximation is known to work
to 3% or better at NLO [13, 14]. Since the Higgs boson re-
ceives its transverse momentum by recoiling against jets,
we expect that a similar accuracy of the large-mt ap-
proximation can be expected for observables where jet
transverse momenta do not exceed O(150) GeV as well.

The e↵ective Lagrangian is given by

L = �1

4
G(a)

µ⌫ G
(a),µ⌫ +

X

i

q̄ii/Dqi�C1
H

v
G(a)

µ⌫ G
(a),µ⌫ , (1)

where G
(a)
µ⌫ is the gluon field-strength tensor, H is the

Higgs boson field and qi denotes the light quark field
of flavor i. The flavor index runs over the values i =
u, d, s, c, b, which are all taken to be massless. The co-
variant derivative /D contains the quark-gluon coupling.
The Higgs vacuum expectation value is denoted by v,
and C1 is the Wilson coe�cient obtained by integrating
out the top quark. The calculation presented here re-
quires C1 through O(↵3

s), which can be obtained from
Ref. [15]. Both the Wilson coe�cient and the strong
coupling constant require ultraviolet renormalization; the
corresponding renormalization constants can be found
e.g. in Ref. [16].

Partonic cross sections computed according to the
above prescription are still not finite physical quantities.

NNPDF2.3, 8 TeV

�
[fb

]

µ [GeV]

LO

NLO

NNLO
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Figure 2: Dependence of the total LO, LO and NNLO cross-
sections on the unphysical scale µ. See text for details.

Two remaining issues must be addressed. First, contribu-
tions of final states with di↵erent number of partons must
be combined in an appropriate way to produce infrared-
safe observables. This requires a definition of final states
with jets. We use the anti-kT jet algorithm [17] to com-
bine partons into jets. Second, initial-state collinear sin-
gularities must be absorbed into the parton distribution
functions (PDFs) by means of standard MS PDF renor-
malization. A detailed discussion of this procedure can
be found in Ref. [18].
The finite cross sections for each of the partonic chan-

nels ij obtained in this way have an expansion in the MS
strong coupling constant ↵s ⌘ ↵s(µ), defined in a theory
with five active flavors,

�ij = �
(0)
ij +

↵s

2⇡
�
(1)
ij +

⇣↵s

2⇡

⌘2

�
(2)
ij +O(↵6

s). (2)

Here, the omitted terms indicated by O(↵6
s) include the

↵3
s factor that is contained in the leading order cross sec-

tion �
(0)
ij . Our computation will include the gg and qg

partonic cross sections at NNLO, �(2)
gg and �

(2)
qg , where q

denotes any light quark or anti-quark. At NLO, it can be
checked using MCFM [19] that these channels contribute
over 99% of the cross section for typical jet transverse
momentum cuts, p

?

⇠ 30 GeV. We therefore include the
partonic channels with two quarks or anti-quarks in the
initial state only through NLO.
In addition to the ultraviolet and collinear renormal-

izations described above, we need the following ingre-

dients to determine �
(2)
gg and �

(2)
qg : the two-loop vir-

tual corrections to the partonic channels gg ! Hg and
qg ! Hq; the one-loop virtual corrections to gg ! Hgg,
gg ! Hqq̄ and qg ! Hqg; the double real emission
processes gg ! Hggg, gg ! Hgqq̄, qg ! Hqgg and
qg ! HqQQ̄, where the QQ̄ pair in the last process can
be of any flavor. The helicity amplitudes for all of these
processes are available in the literature. The two-loop
amplitudes were computed in Ref. [20]. The one-loop cor-
rections to the four-parton processes are known [21] and

To obtain the zero-jet cross section for the Higgs production, we subtract the one-jet inclusive 
cross section from the total inclusive cross section, at matching orders in pQCD.

The inclusive Higgs production was computed recently through N3LO and the H+jet production 
was computed through NNLO QCD; these are same orders in perturbation theory.   Using 
these results, one can improve on predictions for jet-binned cross sections.

R. Boughezal, F. Caola, K.M., F. Petriello, M. Schulze Anastasiou,  Duhr,  Dulat, Furlan, Herzog, 
Gehrmann, Mistlberger etc.

H H
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NNLO calculations:  loops and real emissions

It is easy to recognize that for achieving the cancellation of infra-red and collinear 
divergences, we only need to integrate over phase-space regions which can generate the 
singularities. 

These are the regions where external particles can become soft and/or collinear to each 
other and where any measurable differences between final states with different multiplicities 
become unobservable. In these regions, ``singular’’ matrix elements factorize into universal 
singular functions and non-singular matrix element of lower multiplicity. 
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can be factorized with respect to the tree-level current Ja (0)
µ (q) (see Eqs. (35) and (36)),

new ‘non-factorizable’ contributions appear when the loop momentum is soft. To single
out these new contributions, we write the following identity:

|M(1)
soft(q, {p})〉 = gS µε εµ(q) J

(0)
µ (q) |M(1)

soft({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

, (37)

where we have added and subtracted the ‘factorized’ contribution. Then we combine the
contributions from the hard, collinear and soft regions by adding Eqs. (35), (36) and (37),
and we obtain

|M(1)(q, {p})〉 = gS µε εµ(q) J
(0)
µ (q) |M(1)({p})〉

+
(

|M(1)
soft(q, {p})〉 − gSµεεµ(q)J (0)

µ (q)|M(1)
soft({p})〉

)

. (38)

The first term on the right-hand side of Eq. (37) together with the contributions from
Eqs. (35) and (36) have reconstructed the first term on the right-hand side of Eq. (38),
which is exactly the first term on the right-hand side of the factorization formula (17).
What remains to be done to prove the factorization formula is to relate the second term
on the right-hand side of Eq. (17) with the contribution in the round bracket of Eq. (38).

q

l

j

i

i

j

i

j
- + J(0)(q)( )

Figure 2: Graphs that contribute to the one-loop soft current.

For this purpose, we first note that when the real gluon q and the virtual gluon k are
both soft, they can couple only to the external hard lines. In the corresponding Feynman
diagrams, which are schematically represented by the first graph in Fig. 2, the tree-level
amplitude M(0)({p}) is factorized in the soft limit. We can write:

|M(1)
soft(q, {p})〉 # (gS µε)3 εµ(q) K

(1)
µ (q, ε) |M(0)({p})〉 , (39)

where the kernel K
(1) (represented by the box in Fig. 2) denotes all the soft-gluon insertions

of q and k on the hard-momentum lines. Then, we note that M(0)({p}) is factorized also

in the expression (34) for M(1)
soft({p}). Therefore, the contribution in the round bracket

of Eq. (38) can be recast in the form of the second term on the right-hand side of the
factorization formula (17). Moreover, using Eqs. (39) and (34), we obtain the following
explicit representation of the one-loop contribution J

(1) to the soft-gluon current (Fig. 2):

εµ(q) J
(1)
µ (q, ε) = εµ(q)

{

K
(1)
µ (q, ε) − J

(0)
µ (q)

1

2

∫

ddk

(2π)d

i

k2 + i0

[

J
(0)
ν (k)

]†
· J

ν (0)(k)

}

.

(40)

12

Collinear  factorization at one-loop (Kosower, Uwer)
Soft factorization at one-loop (Catani, Grazzini)

Mn+i+j = FijMn
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NNLO calculations: loops and real emissions

Slicing methods (qt-subtraction  and N-jettiness) are based on splitting the phase-space 
into regular and singular parts.
Z

d�n|M|2FJ =

Z

regular

d�n|M|2FJ +

Z

singular

d�n|M|2
approx

F̃J

A universal, simplified form of scattering amplitudes in kinematic regions responsible for the 
appearance of singularities, together with factorization of multi-particle phase-space, allows 
us to extract and, eventually, cancel  them in  a generic, process-independent way.   

There are two basic methods familiar from NLO computations: slicing and subtraction.  

Z
d�n|M|2FJ =

Z
d�n

⇣
|M|2FJ � |M|2

approx

F̃J

⌘
+

Z
d�n|M|2

approx

F̃J

Catani, Grazzini;       Bougezhal,  Focke, Liu, Petriello;  Gaunt, Stahlhofen, Tackmann, Walsh.

Gehrmann-de Ridder,  Gehrmann, Glover;  Czakon;  Bougezhal, Petriello, K.M.
Cacciari, Dreiyer, Kalberg, Salam, Zanderighi

Subtraction methods (antenna,  improved sector decomposition and projection to Born) are 
based on subtracting approximate expressions for the amplitude squared from the  integrand 
to make the difference integrable.

All  these methods work and have been used in a large number of  recent  NNLO QCD 
computations.
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Fiducial cross sections

The results of N3LO computation for inclusive Higgs production, NNLO for the H
+j production as well as advances with re-summations of jet-radius logarithms 
allow one to improve on existing predictions for 0-jet and 1-jet bin cross 
sections. 
For the 13 TeV LHC, using NNPDF2.3, anti-kT, R=0.5, μ0=mH/2, Qres = mH/2 and 
accounting for top and bottom mass effects, one finds the following results:

0-jet bin

≥1-jet bin

• No breakdown of fixed order perturbation theory for pT ~ 25- 30 GeV ;
• Reliable error estimate from lower orders ; residual errors O(3-5) percent for the 

two jet bins; 
• Re-summed results change fixed-order results within the error bars of the 

former/latter.  There seems to be little difference between re-summed and fixed 
order results. 

A. Banfi, F. Caola,  F. Dreyer, P. Monni, G.Salam, G. Zanderighi, F. Dulat

Figure 6. N3LO+NNLL+LLR best prediction for the jet-veto cross section (blue/hatched) com-
pared to NNLO+NNLL (left) and fixed-order at N3LO (right).

LHC 13 TeV ✏N
3LO+NNLL+LL

R

⌃

N3LO+NNLL+LL
R

0-jet [pb] ⌃

N3LO
0-jet ⌃

NNLO+NNLL
0-jet

pt,veto = 25GeV 0.539+0.017
�0.008 24.7+0.8

�1.0 24.3+0.5
�1.0 24.6+2.6

�3.8

pt,veto = 30GeV 0.608+0.016
�0.007 27.9+0.7

�1.1 27.5+0.5
�1.1 27.7+2.9

�4.0

Table 2. Predictions for the jet-veto efficiency and cross section at N3LO+NNLL+LLR, compared
to the N3LO and NNLO+NNLL cross sections. The uncertainty in the fixed-order prediction is
obtained using the JVE method. All numbers include the effect of top and bottom quark masses,
treated as described in the text, and are for a central scale µ

0

= mH/2.

The right-hand plot of Fig. 7 shows our best prediction with uncertainty obtained
with the JVE method, compared to the case of just scale (i.e. µR, µF , Q) variations. We
observe a comparable uncertainty both at small and at large transverse momentum, which
indicates that the JVE method is not overly conservative in the tail of the distribution. We
have observed that the same features persist for the corresponding differential distribution.
Table 3 contains the predictions for the inclusive one-jet cross section for two characteristic
pt,min choices.

4 Conclusions

In this article we have presented new state-of-the-art, N3LO+NNLL+LLR, predictions for
the jet-veto efficiency and the zero-jet cross section in gluon-fusion induced Higgs produc-
tion, as well as NNLO+NNLL+LLR results for the inclusive one-jet cross section. The
results, shown for 13 TeV LHC collisions, incorporate recent advances in the fixed-order
calculation of the total cross section [8], the fixed-order calculation of the one-jet cross sec-
tion [9–11] and the resummation of small-R effects [12]. They also include the earlier NNLL

– 15 –

Figure 7. Matched NNLO+NNLL+LLR prediction for the inclusive one-jet cross section
(blue/hatched) compared to fixed-order at NNLO (left) and to the matched result with direct
scale variation for the uncertainty (right), as explained in the text.

LHC 13 TeV ⌃

NNLO+NNLL+LL
R

�1-jet [pb] ⌃

NNLO
� 1-jet [pb]

pt,min = 25GeV 21.2+0.4
�1.1 21.6+0.5

�1.0

pt,min = 30GeV 18.0+0.3
�1.0 18.4+0.4

�0.8

Table 3. Predictions for the inclusive one-jet cross section at NNLO+NNLL+LLR and NNLO. The
uncertainty in the fixed-order prediction is obtained using the JVE method. All numbers include
the effect of top and bottom quark masses, treated as described in the text, and are for a central
scale µ

0

= mH/2.

jet pt resummation [5] including finite quark mass effects [23]. Uncertainties have been de-
termined using the jet-veto efficiency method, which has been updated here to take into
account the good perturbative convergence observed with the new fixed-order calculations.

Results for the jet-veto efficiency and zero-jet cross section for central scale choices of
µ0 = mH/2 and µ0 = mH are reported in tables 2 and 5, respectively. With our central scale
choice, µ0 = mH/2, we find that the inclusion of the new calculations decreases the jet-veto
efficiency by 2% with respect to the NNLO+NNLL prediction, and it has a substantially
smaller uncertainty, reduced from more than 10% to less than 5%.

In the zero-jet cross section, the reduction in the jet-veto efficiency is compensated
by a similar increase in the total cross section due to the N3LO correction, resulting in a
sub-percent effect. In comparison to the N3LO result, the matched N3LO+NNLL+LLR

jet-veto efficiency and zero-jet cross section are about 2% larger, and have comparable
(⇠ 3 � 4%) theoretical errors. The picture is different for a central scale µ0 = mH , as
discussed in appendix B. In this case the jet-veto efficiency at N3LO+NNLL+LLR decreases
by more than 5% with respect to the NNLO+NNLL result, while it is in perfect agreement

– 16 –
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Higgs cross sections: even more fiducial
To go even more fiducial (i.e. realistic), one can let the Higgs decay and compare results with 
measured cross sections / distributions of the ATLAS collaboration. 

anti� kt, �R = 0.4, pj? = 30 GeV, abs(yj) < 4.4

p?,�1 > 43.75 GeV, p?,�2 = 31.25 GeV, �R�j > 0.4

�fid
NNLO = 9.46+0.56

�0.84 fb�fid
1j,ATLAS = 21.5± 5.3(stat)± 2.3(syst)± 0.6 lum fb

Atlas cuts on photons and 
jets

F. Caola, K.M.,  M. Schulze 
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A hadron collider as a machine for precision studies?
16 4 Higgs Boson Properties

fusion and via vector-boson fusion production [30–32]. The dimuon events can be observed as
a narrow resonance over a falling background distribution. The shape of the background can
be parametrized and fitted together with a signal model. Assuming the current performance of
the CMS detector, we confirm these studies and estimate a measurement of the hµµ coupling
with a precision of 8%, statistically limited in 3000 fb�1.
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Figure 12: Estimated precision on the measurements of k

g

, kW , kZ, kg, kb, kt and k

t

. The pro-
jections assume

p
s = 14 TeV and an integrated dataset of 300 fb�1 (left) and 3000 fb�1 (right).

The projections are obtained with the two uncertainty scenarios described in the text.
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Figure 13: Estimated precision on the signal strengths (left) and coupling modifiers (right).
The projections assuming

p
s = 14 TeV, an integrated dataset of 3000 fb�1 and Scenario 1 are

compared with a projection neglecting theoretical uncertainties.

4.5 Spin-parity

Besides testing Higgs couplings, it is important to determine the spin and quantum numbers
of the new particle as accurately as possible. The full case study has been presented by CMS
with the example of separation of the SM Higgs boson model and the pseudoscalar (0�) [7].
Studies on the prospects of measuring CP-mixing of the Higgs boson are presented using the
H! ZZ⇤ ! 4l channel. The decay amplitude for a spin-zero boson defined as

A(H ! ZZ) = v�1
⇣

a1m2
Ze

⇤
1e

⇤
2 + a2 f ⇤(1)

µn

f ⇤(2),µn + a3 f ⇤(1)
µn

f̃ ⇤(2),µn

⌘
. (2)

H+0 jet N3LO O(3-5 %) 10 pb fully inclusive 

H+1 jet N2LO O(7%)  7 pb fully exclusive; Higgs decays, 
infinite mass limit

H+2 jet NLO O(20%) 1.5 pb matched/merged

H+3 jet NLO O(20%) 0.4 pb matched/merged/almost

WBF N2LO O(1%) 1.5 pb exclusive, no VBF cuts

WBF N2LO O(5%) 0.2 pb exclusive, VBF cuts

ZH, WH N2LO O(2-3%) O(1) pb decays to bottom quarks at 
NLO, no massesttH NLO O(5%) 0.2pb decays, off-shell effects

Traditionally, hadron colliders played a role of the discovery machines but, given spectacular 
theoretical  advances of recent years, it may be possible to do precision physics at those 
machines.  A new situation, right in time for the beginning of the Run II.    

As an illustration,   compare  theoretical precision on major Higgs production cross sections, that 
we already have,  with  experimental precision expected  with 3000/fb.  
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Future: precision physics at a hadron collider
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H + j

H + 2j

Z + j t

V V

tt̄

V V + 1j, V V + 2j

Future: precision physics at a hadron collider

Precision physics program should aim at facilitating  discoveries at the LHC which means that 
the focus should be  on improving  precision for complex processes, across the board.   This will 
allow us to extract maximal information from the multitude of LHC processes by watching for 
correlated BSM contributions to many of them.  Interestingly,  we are not too far from this goal 
since we already have high-precision predictions for a large number of complex processes.
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Summary
1) Fixed order perturbative computations is the only way to ensure that precision of 
theory predictions is actually improved. Approximate computations  are useful for order-
of-magnitude estimates but are insufficient for precision physics.

2) Resummations are useful and important.  However,  we often deal with situations  
where (resummed) logarithms are neither large nor small.  In those cases,  several orders 
in fixed order perturbative QCD take us as far as advanced resummations but with an 
added bonus of non-logarithmic corrections accounted for. 

3) Uncertainties in  input parameters and parton distribution functions is an important
issue; it is difficult to anticipate progress that can be expected.

4) Precision can only be achieved for observables for which  use of parton showers can 
be minimized.  Minimization of the use of parton showers -- along with  their 
improvements -- should be a priority for precision studies. 

4) Progress with precision physics can only be achieved through a combined effort of  
theoretical and experimental communities. Indeed,  certain experimental practices 
(extrapolations, background simulations with parton showers, multi-variate techniques, 
data-driven background estimates) may introduce  biases that are impossible to 
understand and interpret theoretically at high level of precision.
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Conclusion
The LHC is the first hadron collider where outcomes of hard proton collisions can be predicted  
with  a few percent precision for a large number of diverse final states.  The possibility to do that is 
the result of spectacular progress in technology of perturbative QCD that occurred in recent 
years. 

Further improvements of  theoretical methods are required to pursue this research program. They 
include  understanding  massive loops,  development of  two-loop  unitarity and improvements in 
the efficiency of subtraction methods. 

Precision studies at the LHC will allow determination of Higgs couplings with a few percent 
precision or perhaps even better if theoretical and experimental progress continues at a pace. that 
we have seen in recent years. 

Equally important, progress with precision predictions for complex multi-particle final states  
should allow for broad-band searches for (correlated) deviations in multitude of kinematic 
distributions that can be measured for various final states at the LHC.  Such correlated deviations 
-- if discovered -- will signal the presence of physics beyond the SM which is too heavy to be 
observed at the LHC  and, in this way, will allow us to determine the energy scale where the 
Standard Model breaks down.

Moreover, to fully benefit from these theoretical developments, we will need  to  better 
understand parameters that enter  calculation of cross sections (PDFs, masses, couplings, etc.),  to 
include   electroweak corrections, to work only with realistic final states and fiducial cross sections 
and to understand the limitations of various approximations that we currently use in theoretical 
computations. 
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