

Introduction

-The Higgs width is very narrow

- 1000x less than the W,Z
- Plus the coupling is unique
- There icould be unknown weakly coupled particles in Higgs decay.
-The analyses discussed here are largely Higgs decay studies
- They benefit from the increase in Higgs σ at 13 TeV
- But with a factor 2 or 3
- So 2015 data is relatively minor c//f 2012
-Only one result is shown based on 2015 data.

Higgs to invisible: direct

-Dark matter is the most obvious target
-Direct observation means tagging a Higgs production along with the invisible decay

- ggF is patently impossible
- i.e. someone shgould work on it!
- ttH has been suggested in phenomenology, but no experiental results
- VH gaves a clean experimental signature but low rate
- $Z \rightarrow I I$ or $W / Z \rightarrow q$ q
- VBF gives the best LHC results

ZH \rightarrow invisible

- $Z \rightarrow \|$ gives clean signal and easy trigger
- Irreducible background of ZZ \rightarrow Iluu dominates
- Similar kinematics of signal and background
- Low MET threshold helps to maximise rate

ZH \rightarrow II+invisible results

- Nothing surprising seen -ATLAS set limits of 75% obs (62\%) expected -CMS limits: 83% obs (86% expected)

Higgs to invisible: VBF

- VBF was essential for the $\mathrm{H} \rightarrow$ It discovery
- The high-mass forward jet pair gives an improved s/b

-Tagging the jet pair allows a search for the invisible Higgs decay
- Much higher cross-section than ZH
- But not as clean a tag

VBF H to invisible

- Jet pair mass > 1.0TeV (CMS, ATLAS main signal)
- Delta eta cut on tag jets
- Observed (expected) 0.28 (0.31) in ATLAS
- Observed (expected) 0.49 (0.65) in CMS

88 regions of p_{T} and jet pair mass used for VBF -Limit set at 69% (62% expected)

- Brings CMS combined to 32\%
-Compare ratios of accepted σ at 13 and 8 TeV
- Generally below PDFs - preliminary?

H to invisible summary

	ATLAS	CMS
ZH	65%	75%
VBF	28%	57%

- Clear lead for the VBF production modes
- But in run 2 VBF may suffer from pileup
- And it has harder systematics
- Can we link W+jets and Z+jets as a control regions?
- Production kinematics is not identical
- My guess is ZH will be relatively more inportant
-This is a vital search - we have much better evidence for DM than most many in this talk

Higgs to invisible/BSM: indirect

 ATLAS-CONF-2015-044, CMS-PAG-HIG-15-002- Consistency of the Higgs decays in 8 parameter fit, with:
- κ_{V} constrained < 1
- Or $\mathrm{Br}_{\mathrm{BSM}}=0$
-lt is impressive how insensitive fit is to this -Upper limit on BSM decay is 0.34 @ 95\% CL

Combined invisible limit

-Direct and indirect constrains on invisible higgs are independent - Combine for best sensitivity

- Ading visible decays moves BR limit from 25% to 23%
-Plus it is arguably less model depedent most Brs taken from data,

Higgs invisible v Dark Matter

-Interpret dark

 matter in a 'Higgs portal' model- Higgs only SM
paricle coupled to DM
-The Spin
Independent is very close to this
- Strong constraints for $m_{x}<m_{H} / 2$
- But X dependent

Virtual Higgs decays

 ATLAS-CONF-2015-044, CMS-PAG-HIG-15-002- Search for BSM Higgs particle by assuming all SM but allowing arbitrary strength on Higgs loops
- Despite early yy final hits the SM nail
- Not a trace of new particles here
- $4^{\text {th }}$ chiral fermion generations rarely
 considered now

Next: Visible decays

-CMS Searched for a decay to 2 gravitinos and $1 / 2$ y

- Decay to pairs of $X_{1}{ }^{0}$ possible
-Gluon fusion selection
- $\mathrm{E}_{\mathrm{T}}^{\text {miss }}>40, \mathrm{E}_{\mathrm{t}}^{\mathrm{r}}>45 \mathrm{GeV}$
- SUSY/Mod.Indep. Variants

-ZH selection
- $\mathrm{p}_{\mathrm{T}}^{2}>60, \mathrm{E}_{\mathrm{t}}^{\text {miss }}>60, \mathrm{E}_{\mathrm{t}}^{\gamma}>20 \mathrm{GeV}$
- Study $m T$ of Z, y \& $E_{t}^{\text {miss }}$
- No sign of signal,
-limits are extracted as fn of ET ve.g.assuming light gravitino

Photon(s) $+\mathrm{E}_{\mathrm{T}}{ }^{\text {miss }}$, VBF mode

-ATLAS looked in VBF selection

- Trigger on
- $y>43 \mathrm{GeV}$
- E_{T} miss $>60 \mathrm{GeV}$
$-\mathrm{m}_{\mathrm{ij}}>600,|\Delta \eta|<4$ VBF tag
- At most 1 central jet
- $\Delta \varphi\left(\gamma, \mathrm{E}_{\mathrm{t}}^{\text {miss }}\right)<1.8$
- Diphoton region also used
- Single y has 1.1σ excess -Limits on $\mathrm{H} \rightarrow\left(\mathrm{X}_{1}{ }^{0}, \mathrm{G}\right) 20 \%$ or looser

Dark Photons
 ArXiv:1505.07645

-Dark photon, no EM coupling - Might mix with the Z

- It can decay to lepton pairs
- So $\mathrm{H} \rightarrow$ IIII might contain $H \rightarrow Z Z, Z Z_{D}$ and/or $Z_{D} Z_{D}$ modes
- Target Z_{D} by using existing search: use m_{34} offshell pair
- No evidence for Z_{D}
- $\mathrm{Br}\left(\mathrm{H} \rightarrow \mathrm{ZZ}_{\mathrm{d}} \rightarrow \mathrm{IIII}\right)<10^{-4}$

$$
\text { - } 15<m_{z d}<55
$$

Dark Photons: $\mathbf{Z}_{\mathrm{d}} \mathbf{Z}_{\mathrm{d}}$

-If target if pair productionb of Z_{d} start from 41 search, but relax $m_{12} \sim m_{z}$

- Search mass spectrum for $Z_{D} Z_{D}$ modes
- 4 events with both pairs below 62.5 GeV

Constraint of equal pair masses has just 2 events survive

- $\operatorname{Br}\left(\mathrm{H} \rightarrow \mathrm{Z}_{\mathrm{d}} \mathrm{Z}_{\mathrm{d}} \rightarrow\right.$ IIII) $)<3 \times 10^{-4}$
- $15<\mathrm{m}_{\mathrm{zd}}<60$

Higgs to electron jets

H

- Dark photons finally giving ee pairs. - Analysis uses WH signature
- W \rightarrow IV
- Then 2 jets with >99\% EM energy
- But large numbers of tracks -Not re-checked with $>2 \mathrm{fb}^{-1}$!

$\mathrm{h} \rightarrow \mathrm{aa} \rightarrow \mathrm{yyyy}{ }^{\text {arxv:1500.05051141 }}$

-A light nMSSM a might be produced in $\mathrm{h} \rightarrow$ aa

- With $\mathrm{a} \rightarrow \mathrm{yy}$ a possible signature - Select 3 photons
- $\mathrm{p}_{\mathrm{T}}>17 \mathrm{GeV}$ for lowest
- Gives efficient signal reconstruction - $4^{\text {th }}$ photon likely soft
- Total 3y rate sets limits
- Improve using m_{23} and vary m_{a}
- $\operatorname{Br}(\mathrm{H} \rightarrow \mathrm{aa}) * \operatorname{Br}(\mathrm{a} \rightarrow \mathrm{yy})^{2}$ below 10^{-3} -Is it worth trying 4 photons?

$h \rightarrow \mathbf{Q a} \rightarrow \mathrm{\mu} \boldsymbol{\mu} \boldsymbol{\mu} \mu^{\text {arXiv:1506.00424 }}$

-CMS consider $\mathrm{a} \rightarrow \mu \mu$ oln $2 m_{\mu}<m_{a}<2 m_{\tau}$ window -No equal mass events

-Limits have little dependence on m_{a}

$h \rightarrow \mathbf{a a} \rightarrow \mu \mu \tau \tau$

olf $m_{a}>2 m_{\tau}$ the τ decay opens -Analsis uses good $\mu \mu$ mass to identify peak

- $\mu \mathrm{p}_{\mathrm{T}}>18\left(1^{\text {st }}\right) \& 5-9\left(2^{\text {nd }}\right)$ -Identify τ in $\mathrm{e} / \mu / \mathrm{had}$ modes
- $p_{T}>5-15 \mathrm{GeV}$
-19 events observed, 20 expected
- Older results looked for 4-tau mode - no sign of signal

Combining $\mathrm{a} \rightarrow \mu \mu$ and $\mathrm{a} \rightarrow \tau \tau$

-Combination needs relative rate

- Here assume given by mass - Upsilon region is covered by 4 t
$-\mathrm{J} / \mathrm{\psi}$ and $15-20$ not covered
$\bullet \mu \mu \mathrm{bb}$ mode is also searched for

Higgs to long-lived particles

-Hidden sector coupled very weakly to SM?

- $H \rightarrow \pi_{v} \pi_{v}$ with long lived π_{v}
- Decaying to bb, cc, «t
-Here ask for decay in muon spectrometer
- 4-7m from beam position
- Veto jets
- Request 2 collinear vertices
- 0 events seen
\cdot Limits 10% br at best
- This is $2 \mathrm{fb}^{-1}$ at 7 TeV
-Is metastable a priority?
(0.6 STLAS

Higgs lepton flavour violation

$\cdot \mathrm{H} \rightarrow \mu \mathrm{t}$ from CMS

- 0/1/2 jets $\times \mathrm{T}_{\mathrm{e}} / \mathrm{\tau}_{\mathrm{h}}$
-The most powerful is 0 jets $\times \mathrm{T}_{\mathrm{e}}$
- Also has the most significant excess
- Shown right
- Br is $0.84 \pm 0.38 \%$

ATLAS LFV

- $\mathrm{H} \rightarrow \mu \mathrm{t}_{\mathrm{h}}$ only
- Divided into two caregories of mT <, $>40 \mathrm{GeV}$
-They are combined in the plot right:
-Br is $0.77 \pm 0.62 \%$
- Remember CMS found the most powerful is
0 jets $\times \tau_{e}$

$\mathrm{H} \rightarrow \tau \mu \mathrm{LFV}$

$H \rightarrow \mu \tau$ limits	ATLAS		CMS	
	Expected	Observed	Expected	Observed
$\mu \mathrm{t}_{\text {e }}$	n.a.	n.a.	$\begin{aligned} & 1.32 / 1.66 / 3 . \\ & 77 \% \end{aligned}$	$\begin{aligned} & \text { 2.04/2.38/3. } \\ & 84 \% \end{aligned}$
$\mu \tau_{n}$	1.24\%	1.85\%	$\begin{aligned} & \text { 2.34.2.07/2. } \\ & 31 \% \end{aligned}$	$\begin{aligned} & \text { 2.61/2.22/3. } \\ & 68 \% \end{aligned}$
Combined	1.24\%	1.85\%	0.75\%	1.51\%
-Both ATLAS and CMS have excesses - 2.1 sigma in CMS, 1.2sigma in ATLAS				
-Clearly a very interesting, but not very significant, excess				

FCNC $t \rightarrow H q ; H \rightarrow b b$

FCNC top-Higgs

-Di-photon has hadronic and leptonic top selections

CMS FCNC $t \rightarrow H x$

\cdot CMS use $\mathrm{H} \rightarrow \mathrm{yy}$ and multilepton

- Multiple $E_{T}^{\text {miss }}$ categories used
- Re-using $\mathrm{A} \rightarrow \mathrm{Zh}$ and $\mathrm{H} \rightarrow$ hh search

Channel	$E_{\mathrm{T}}^{\text {miss }}(\mathrm{GeV})$	N_{b}	Obs.	Exp.	Sig.
	$(50,100)$	≥ 1	1	2.3 ± 1.2	2.88 ± 0.39
	$(30,50)$	≥ 1	2	1.1 ± 0.6	2.16 ± 0.30
$\gamma \gamma \ell$	$(0,30)$	≥ 1	2	2.1 ± 1.1	1.76 ± 0.24
	$(50,100)$	0	7	9.5 ± 4.4	2.22 ± 0.31
	$(100, \infty)$	≥ 1	0	0.5 ± 0.4	0.92 ± 0.14
	$(100, \infty)$	0	1	2.2 ± 1.0	0.94 ± 0.17
lौौ	$(50,100)$	≥ 1	48	48 ± 23	9.5 ± 2.3
(OSSF1, below-Z)	$(0,50)$	≥ 1	34	42 ± 11	5.9 ± 1.2
lौौ	$(50,100)$	≥ 1	29	26 ± 13	5.9 ± 1.3
(OSSF0)	$(0,50)$	≥ 1	29	23 ± 10	4.3 ± 1.1

Combination of $\mathrm{t} \rightarrow \mathrm{Hc}$

$t \rightarrow \mathrm{Hc}$
Expected Observed Expected Observed
$\mathrm{H} \rightarrow \mathrm{yy} \quad 0.51 \% \quad 0.79 \% \quad 0.81 \% \quad 0.69 \%$

$\mathrm{H} \rightarrow$ multilepton	0.54%	0.79%	1.17%	1.28%
$\mathrm{H} \rightarrow \mathrm{bb}$	0.42%	0.56%	n.a.	
Combined	0.25%	0.46%	0.65%	0.56%

-Small excess in ATLAS

- <2sigma - Not confirmed in CMS
- Though less sensitive

Conclusions: no new physics

-BSM couplings analyses

- $\mathrm{H} \rightarrow \mathrm{BSM} \mathrm{Br}<34 \%$ ATLAS+CMS, $\mathrm{k}_{\mathrm{v}}<1$ assumed
- Loops with virtual particles ($\mathrm{gg} \rightarrow \mathrm{H}, \mathrm{H} \rightarrow \mathrm{yy}$) good to 10%
- $\mathrm{H} \rightarrow$ Invisible $\mathrm{Br}<25 \%$ direct (23% in combination)
-Non-SM couplings of the H_{125} searched for:
- $\operatorname{Br}\left(\mathrm{H} \rightarrow \mathrm{Z}_{(0)} \mathrm{Z}_{\mathrm{d}} \rightarrow \mathrm{IIII}\right)<(3 \mathrm{x}) 10^{-4}$ for $15<\mathrm{m}_{\mathrm{Zd}}<55$
- BR $\left(H \rightarrow X \rightarrow V_{d}\right)<30-40 \%$ for $m_{y d}=100 \mathrm{MeV}$: electron jets
- $\operatorname{Br}(\mathrm{H} \rightarrow \mathrm{aa}) * \operatorname{Br}(\mathrm{a} \rightarrow \mu \mu)^{2}$ below 10^{-4} (to 10^{-6} !) for $0.2<\mathrm{m}_{\mathrm{a}}<60$
- $\mathrm{Br}(\mathrm{H} \rightarrow \mathrm{aa})^{*} \operatorname{Br}(\mathrm{a} \rightarrow \mathrm{yy})^{2}$ below 10^{-3}
- $\mathrm{H} \rightarrow \pi_{\mathrm{v}} \pi_{\mathrm{v}}$ long-lived are $<50 \% \mathrm{Br} 20<\mathrm{m}_{\pi}<402<\mathrm{ct}<12 \mathrm{~m}$
- 10\% at best points
- $\mathrm{H} \rightarrow \mathrm{xG} / \mathrm{XX} \rightarrow \mathrm{Ggy}(\mathrm{y}) \mathrm{Br}<10 \% 1<\mathrm{m}_{\mathrm{x}}<120$
-Flavour changing analyses interesting
- H $\rightarrow \mu \tau, t \rightarrow H c$ both have small excess

Post-conclusions:

-l pray your indulgence for a few slides on - $\Gamma(\mathrm{H} \rightarrow \mathrm{WW})$

- Dependence on Γ_{w}
- ttX
- A question on modelling

Higgs width to W

-The Higgs decay width to off-shell dibosons is to
LO given by: Djouadi's Anatomy

$$
\Gamma\left(H^{0} \rightarrow V^{*} V^{*}\right)=\frac{1}{\pi^{2}} \int_{0}^{M_{H^{\circ}}^{2}} \frac{d q_{1}^{2} M_{V} \Gamma_{V}}{\left(q_{1}^{2}-M_{V}^{2}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}} \int_{0}^{\left(M_{H^{\prime}}-Q_{1}\right)^{2}} \frac{d q_{2}^{2} M_{V} \Gamma_{V}}{\left(q_{2}^{2}-M_{V}^{2}\right)^{2}+M_{V}^{2} \Gamma_{V}^{2}} \Gamma_{0}
$$

- For the case of one on shell and one off shell this become approximately proportional to one power of the width.
- Thus the $\mathrm{Br} \mathrm{H} \rightarrow \mathrm{WW}$ is proportional to the W boson width
- This is currently known to 2%
- Not totally negligible in analysing Higgs width

$\Gamma_{w w}\left(q_{1}, q_{2}\right)$ for $m_{H}=100,200$

$\Gamma_{\text {wwizz }}\left(q_{1}, q_{2}\right)$ for $m_{H}=125.09$

How to interpret?

- Integrate to get the total width:
- $\Gamma_{\text {wul }} l_{10}=0.941 \mathrm{MeV}$ at 126
- c/f 0.974 MeV in YR3 at the same mass
- Agreement to 3\% (2\% for ZZ)
-Now calculate width at 125.09:
- $\Gamma_{w w}=0.853 \mathrm{MeV}$ at 125.09
- $\mathrm{BR}(\mathrm{H} \rightarrow \mathrm{WW})$ must sum over all Brs
- And LHC does not measure Brs anyway
- So find $\Gamma_{w /} / \Gamma_{z z}=B R(W W) / B R(Z Z)$
- $B R /\left.B R\right|_{10}=7.99$ (c/f 8.07 in YR 3)
-Data ratio is in the LHC CONF on couplings.
- So find how Br varies with Γ_{w}

BR ratio v W width

-Quadratic for low mass Higgs, const for 200 Gev - Due to 2 or 0 of shell W bosons

BR ratio v W width

- Linear for $\mathrm{m}_{\mathrm{H}}=125.09$

- One W on shell, the other off.
- Use measured
$B R(W W) / B R(Z Z)=6.8_{-1.3}^{+1.7}$
-Extract

$$
\Gamma_{W}=1.8_{-0.3}^{+0.4} \mathrm{GeV}
$$

-This can be compared with 2.085 ± 0.042 world average

- Factor 10 worse
- But errors will improve

Systematic errors

-Few parametric ingredients:

- m_{z}
- m_{w}
- m_{H}
- Γ_{z}
- Γ_{H}
- None of them contribute significantly
- Biggest is Γ_{z} which is known $20 x$ better than Γ_{z}.
-Theoretical uncertainty on $\Gamma(\mathrm{H} \rightarrow \mathrm{WW})$ extraction is
0.5\%
- Again, negligible.

Conclusion

-The W boson width should not be ignored in Higgs boson coupling studies
-First LHC measurement of the W boson width!

$$
\Gamma_{W}=1.8_{-0.3}^{+0.4} \mathrm{GeV}
$$

- From Higgs branching ratios
- Assumes SM couplings
- I am asking Higgs/Pc whether I can publish
- Errors comparable to any other experiment
- Factor 10 off world average
- But will improve with time
-A proper measurement of the W width is needed to exploit Higgs measurements fully.

tt + X

-Many searches look for tt plus more

- ttV, SUSY, vector like quarks, ttH all have seaches
where you add leptons or b quarks to a tt system.
- Modelling is complex, but e.g. ttbb is known at NLO - So can we confidently predict SM backgrounds to such searches?

tt̄plus jets

CMS-PAS-TOP-16-008

ATLAS VLQ v CMS ttH

-Both analyses select 1 lepton and at least 4 jets, at least 2 b tagged
-Examine caterogires by numbers of jets, b jets and boosted jet candidates
-ATLAS has problems with ttbb rates
-See 120\%-190\% of MC in these regions

- Meanwhile CMS sees expected rate!
- Modelling of this states is complicated

ATLAS VLQ v CMS ttH

VLQ - 2: 6j4b pre/post fit

-Factor 2 increase in ttbb component to fit data

ttH - multilepton

- Multilepton ttH analysis in 2012
- This channel is $3-$ leptons and one b jet
- Plot shows Njets $p_{\mathrm{T}}>25 \mathrm{GeV}$
- Again, factor 2 increase for $5+$ jets

tt modelling

-ttbb and tt+leptons are complex systems to model -tt+jets overall seems reaonably defined ettbb:

- At 13 TeV in CMS looks plausibly modelled
- In ATLAS there is a factor 2 discrepancy
-Can we treat ttbb shape and rate as independent?
-3-leptons plus a b
- Events with 5 or 6 jets have excesses at 8 and 13 TeV in CMS and 8 TeV in ATLAS.
- Remember: $\mathrm{tt}+4$ jets modelling gets tricky

