Bill Murray Warwick University / RAL, STFC bill.murray@cern.ch

> Invisible Exotic Hidden valley

2 1 1 C And

Non-Standard Higgs Non-Standard Higgs Nevactions & Decays

Introduction

The Higgs width is very narrow

- 1000x less than the W,Z
- Plus the coupling is unique
- There icould be unknown weakly coupled particles in Higgs decay.

 The analyses discussed here are largely Higgs decay studies

•They benefit from the increase in Higgs σ at 13TeV

But with a factor 2 or 3

So 2015 data is relatively minor c//f 2012

•Only one result is shown based on 2015 data.

WARWICK

Higgs to invisible: direct

Dark matter is the most obvious target
Direct observation means tagging a Higgs production along with the invisible decay

- ggF is patently impossible
 - i.e. someone shgould work on it!
- ttH has been suggested in phenomenology, but no experiental results
- VH gaves a clean experimental signature but low rate
 Z→II or W/Z→qq
- VBF gives the best LHC results

ZH → invisible

 $\bullet Z \rightarrow II$ gives clean signal and easy trigger

- Irreducible background of $ZZ \rightarrow IIvv$ dominates
- Similar kinematics of signal and background
- Low MET threshold helps to maximise rate

WARWICK

ZH → II+invisible results

Nothing surprising seen ATLAS set limits of 75% obs (62%) expected CMS limits: 83% obs (86% expected)

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 6

WARWICK

Higgs to invisible: VBF

- VBF was essential for the H → ττ discovery
 - The high-mass forward jet pair gives an improved s/b

 Tagging the jet pair allows a search for the invisible Higgs decay

- Much higher cross-section than ZH
- But not as clean a tag

VBF H to invisible

Jet pair mass > 1.0TeV (CMS, ATLAS main signal)
Delta eta cut on tag jets
Observed (expected) 0.28 (0.31) in ATLAS
Observed (expected) 0.49 (0.65) in CMS

WARWICK

CMS-PAS-HIG-16-0009 CMS VBF H to invisible @ 13 TeV!

•8 regions of p_{τ} and jet pair mass used for VBF

Limit set at 69% (62% expected)

Brings CMS combined to 32%

•Compare ratios of accepted σ at 13 and 8 TeV

Generally below PDFs – preliminary?

WARWICK

H to invisible summary

	ATLAS	CMS
ZH	65%	75%
VBF	28%	57%

•Clear lead for the VBF production modes

- But in run 2 VBF may suffer from pileup
- And it has harder systematics
 - Can we link W+jets and Z+jets as a control regions?
 - Production kinematics is not identical
- My guess is ZH will be relatively more inportant
 This is a vital search we have much better evidence for DM than most many in this talk

Science & Technology Facilities Council Rutherford Appleton Laboratory THE UNIVERSITY OF WARWICK

Higgs to invisible/BSM: indirect

 Consistency of the Higgs decays in 8 parameter fit, with: • κ_{v} constrained < 1 • Or Br_{RSM}=0 It is impressive how insensitive fit is to this Upper limit on BSM decay is 0.34 @ 95% CL

WARWICK

Combined invisible limit

 Direct and indirect constrains on invisible higgs are independent Combine for best sensitivity Ading visible decays moves BR limit from 25% to 23% Plus it is arguably less model depedent most Brs taken from data,

WARWI

UNIVERSITY

Higgs invisible v Dark Matter

 Interpret dark matter in a 'Higgs portal' model Higgs only SM paricle coupled to DM The Spin Independent is very close to this Strong constraints for $m_x < m_H/2$ But x dependent

Science & Technology Facilities Council Rutherford Appleton Laboratory

Science & Technology Facilities Council Rutherford Appleton Laboratory

Virtual Higgs decays

 Search for BSM Higgs particle by assuming all SM but allowing arbitrary strength on Higgs loops Despite early yy final hits the SM nail Not a trace of new particles here 4th chiral fermion generations rarely considered now

Next: Visible decays

ratory

 $\tilde{\chi}_1^0$

WARWICK

Phys. Lett. B 753 (2016) 363 H to y(s) plus E miss

Kungo •CMS Searched for a decay to 2 gravitinos and 1/2 y • Decay to pairs of χ_1^0 possible Gluon fusion selection • $E_{\tau}^{miss}>40, E_{t}^{\gamma}>45 \text{ GeV}$ SUSY/Mod.Indep. Variants ZH selection p_τ^z>60, E_t^{miss}>60, E_t^γ>20 GeV Study mT of Z,y & E^{miss}

No sign of signal,
limits are extracted as fn of ET
e.g.assuming light gravitino //

Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 16

WARWICK

ATLAS-CONF-2015-001 Photon(s)+E^{miss}, VBF mode

- ATLAS looked in VBF selection
 Trigger on
 - γ>43GeV
 - $E_T^{miss} > 60 \text{ GeV}$

om_{ii}>600, |Δη|<4 VBF tag

- At most 1 central jet
- $\Delta \phi(\gamma, E_t^{\text{miss}}) < 1.8$

• Diphoton region also used •Single γ has 1.1σ excess •Limits on $H \rightarrow (\chi_1^0, G)$ 20% or looser

THE UNIVERSITY OF WARWICK

Dark Photons ArXiv:1505.07645

10⁻⁵

10-6

15

20

25

30

35

40

95%

- Dark photon, no EM coupling Might mix with the Z It can decay to lepton pairs •So $H \rightarrow IIII$ might contain $H \rightarrow ZZ, ZZ_{D} \text{ and/or } Z_{D}Z_{D}$ modes
 - Target ZZ_n by using existing search: use m₃₄ offshell pair
 - No evidence for Z_D
 - $Br(H \rightarrow ZZ_d \rightarrow IIII) < 10^{-4}$
 - 15<m_{zd}<55

50 55 m_z [GeV]

45

WARWICK

Dark Photons: Z_dZ_d

•If target if pair productionb of Z_d start from 4I search, but relax $m_{12} \sim m_z$

•Search mass spectrum for $Z_D Z_D$ modes

- 4 events with both pairs below 62.5 GeV
- Constraint of equal pair masses has just 2 events survive

• Br(H
$$\rightarrow$$
 Z_dZ_d \rightarrow IIII)<3x10⁻⁴
• 15zd<60

WARWICK

http://arxiv.org/abs/1302.4403

- The dark sector particles do not have to decay directly to SM
 - This model proposes a chain decay
 - With 2 or even 3 steps
 - Dark photons finally giving ee pairs.
- Analysis uses WH signature
 - $W \rightarrow Iv$
- Then 2 jets with >99% EM energy
 But large numbers of tracks
 Not re-checked with >2fb⁻¹!

WARWICK

 $h \rightarrow aa \rightarrow yyyy$ arXiv:1509.05051v1

 A light nMSSM a might be produced in $h \rightarrow aa$ • With $a \rightarrow yy$ a possible signature Select 3 photons • p₁>17 GeV for lowest Gives efficient signal reconstruction 4th photon likely soft Total 3y rate sets limits Improve using m₂₃ and vary m_a • Br (H \rightarrow aa) * Br(a \rightarrow yy)² below 10⁻³ Is it worth trying 4 photons?

WARWICK

$h \rightarrow aa \rightarrow \mu\mu\mu\mu\mu$ arXiv:1506.00424

$h \rightarrow aa \rightarrow \mu\mu\tau\tau$

olf $m_2 > 2m_1$ the τ decay opens Analsis uses good µµ mass to identify peak • µ p₋>18 (1st) & 5-9 (2nd) •Identify τ in e/µ/had modes p₁>5-15 GeV •19 events observed, 20 expected Older results looked for 4-tau mode – no sign of signal

WARWICK

Combining $a \rightarrow \mu\mu$ and $a \rightarrow \tau\tau$

 Combination needs relative rate Here assume given by mass Upsilon region is covered by 4t •J/\u03c6 and 15-20 not covered upbb mode is also searched for

Science & Technology Facilities Council Rutherford Appleton Laboratory THE UNIVERSITY O

Higgs to long-lived particles

- Hidden sector coupled very weakly to SM?
 - $H \rightarrow \pi_v \pi_v$ with long lived π_v
 - Decaying to bb, cc, ττ
- Here ask for decay in muon spectrometer
 - 4-7m from beam position
 - Veto jets
 - Request 2 collinear vertices
 - 0 events seen
- Limits 10% br at best
 - This is 2fb⁻¹ at 7 TeV
 Is motostable a priority
- Is metastable a priority?

WARWICK

Higgs lepton flavour violation

- •H $\rightarrow \mu \tau$ from CMS • 0/1/2 jets x τ_e/τ_h •The most powerful is 0 jets x τ_e
 - Also has the most significant excess
- Shown right
 Br is 0.84±0.38%

ATLAS LFV

•H $\rightarrow \mu \tau_{h}$ only Divided into two caregories of mT<,>40 GeV They are combined in the plot right: •Br is 0.77±0.62% Remember CMS found the most powerful is 0 jets x τ

$H \to \tau \mu \ LFV$

$H \rightarrow \ \mu\tau \ limits$	ATLAS		CMS		
	Expected	Observed	Expected	Observed	
μτ _e	n.a.	n.a.	1.32/1.66/3. 77%	2.04/2.38/3. 84%	
μτ _h	1.24%	1.85%	2.34.2.07/2. 31%	2.61/2.22/3. 68%	
Combined	1.24%	1.85%	0.75%	1.51%	

Both ATLAS and CMS have excesses

 2.1 sigma in CMS, 1.2sigma in ATLAS
 Clearly a very interesting, but not very significant, excess Science & Technology Facilities Council Rutherford Appleton Laboratory

W. Murray 28

WARWICK

FCNC $t \rightarrow Hq; H \rightarrow bb$

FCNC top-Higgs

$\textbf{CMS FCNC } t \rightarrow \textbf{Hx}$

•CMS use $H \rightarrow \gamma \gamma$ and multilepton

- Multiple E_T^{miss} categories used
- Re-using $A \rightarrow Zh$ and $H \rightarrow hh$ search

Channel	$E_{\rm T}^{\rm miss}$ (GeV)	N _b	Obs.	Exp.	Sig.
$\gamma\gamma\ell$	(50, 100)	≥1	1	2.3 ± 1.2	2.88 ± 0.39
	(30, 50)	≥ 1	2	1.1 ± 0.6	2.16 ± 0.30
	(0, 30)	≥1	2	2.1 ± 1.1	1.76 ± 0.24
	(50, 100)	0	7	9.5 ± 4.4	2.22 ± 0.31
	(100, ∞)	≥1	0	0.5 ± 0.4	0.92 ± 0.14
	(100, ∞)	0	1	2.2 ± 1.0	0.94 ± 0.17
lll	(50, 100)	≥1	48	48 ± 23	9.5 ± 2.3
(OSSF1, below-Z)	(0, 50)	≥ 1	34	42 ± 11	5.9 ± 1.2
$\ell\ell\ell$	(50, 100)	≥1	29	26 ± 13	5.9 ± 1.3
(OSSF0)	(0, 50)	≥ 1	29	23 ± 10	4.3 ± 1.1

$\textbf{Combination of } t \rightarrow \textbf{Hc}$

t→ Hc	ATLAS		CMS		
	Expected	Observed	Expected	Observed	
H → γγ	0.51%	0.79%	0.81%	0.69%	
$H \rightarrow multilepton$	0.54%	0.79%	1.17%	1.28%	
$H \rightarrow bb$	0.42%	0.56%	n.a.		
Combined	0.25%	0.46%	0.65%	0.56%	
•Small excess in ATLAS • <2sigma • Not confirmed in CMS • Though less sensitive					

WARWICK

Conclusions: no new physics

•BSM couplings analyses

• $H \rightarrow BSM Br < 34\% ATLAS + CMS$, $\kappa_v < 1$ assumed

• Loops with virtual particles $(gg \rightarrow H, H \rightarrow \gamma\gamma)$ good to 10% • $H \rightarrow Invisible Br<25\%$ direct (23% in combination) •Non-SM couplings of the H_{125} searched for:

• Br(H \rightarrow Z_(d)Z_d \rightarrow IIII)<(3x)10⁻⁴ for 15<m_{zd}<55

• BR $(H \rightarrow X \rightarrow \gamma_d)$ <30-40% for m_{vd} =100MeV: electron jets

- Br (H \rightarrow aa) * Br(a \rightarrow µµ)² below 10⁻⁴ (to 10⁻⁶!) for 0.2<m_a<60
- Br (H \rightarrow aa) * Br(a $\rightarrow \gamma \gamma$)² below 10⁻³
- $H \rightarrow \pi_{V}\pi_{V}$ long-lived are <50% Br 20<m_{\pi}<40 2<ct<12m
 - 10% at best points
- $H \rightarrow \chi \widetilde{G} / \chi \chi \rightarrow \widetilde{G} \widetilde{g} \gamma(\gamma) \text{ Br} < 10\% 1 < m_{\chi} < 120$

Flavour changing analyses interesting

• $H \rightarrow \mu \tau$, $t \rightarrow Hc$ both have small excess

WARWICK

Post-conclusions:

I pray your indulgence for a few slides on
Γ(H → WW)

- ${\scriptstyle \circ}$ Dependence on ${\scriptstyle \Gamma}_{\scriptstyle W}$
- ttX
 - A question on modelling

arXiv:1604.01665

Higgs width to W

 The Higgs decay width to off-shell dibosons is to LO given by: Djouadi's Anatomy

$$\Gamma(H^{0} \rightarrow V^{*}V^{*}) = \frac{1}{\pi^{2}} \int_{0}^{M_{H^{0}}^{2}} \frac{dq_{1}^{2}M_{V}\Gamma_{V}}{(q_{1}^{2} - M_{V}^{2})^{2} + M_{V}^{2}\Gamma_{V}^{2}} \int_{0}^{(M_{H^{0}} - Q_{1})^{2}} \frac{dq_{2}^{2}M_{V}\Gamma_{V}}{(q_{2}^{2} - M_{V}^{2})^{2} + M_{V}^{2}\Gamma_{V}^{2}} \Gamma_{0}$$

 For the case of one on shell and one off shell this become approximately proportional to one power of the width.

- Thus the Br H → WW is proportional to the W boson width
- This is currently known to 2%
- Not totally negligible in analysing Higgs width

Science & Technology Facilities Council Rutherford Appleton Laboratory WARWICK

$\Gamma_{WW}(q_1,q_2)$ for $m_H = 100,200$

Science & Technology Facilities Council Rutherford Appleton Laboratory W. Murray 36

THE UNIVERSITY OF WARWICK

$\Gamma_{WW/ZZ}(q_1,q_2)$ for $m_H = 125.09$

How to interpret?

Integrate to get the total width:

- $\Gamma_{WW}|_{lo}$ =0.941MeV at 126
- c/f 0.974MeV in YR3 at the same mass
- Agreement to 3% (2% for ZZ)
- •Now calculate width at 125.09:
 - Γ_{ww}=0.853 MeV at 125.09
- •BR($H \rightarrow WW$) must sum over all Brs
 - And LHC does not measure Brs anyway
 - So find Γ_{WW}/Γ_{ZZ} =BR(WW)/BR(ZZ)
 - BR/BR|₁₀=7.99 (c/f 8.07 in YR 3)

•Data ratio is in the LHC CONF on couplings.

• So find how Br varies with Γ_w

BR ratio v W width

Quadratic for low mass Higgs, const for 200 Gev
 Due to 2 or 0 of shell W bosons

BR ratio v W width

- •Linear for m_{H} =125.09
 - One W on shell, the other off.
- Use measured

 $BR(WW)/BR(ZZ) = 6.8^{+1.7}_{-1.3}$ •Extract

 $\Gamma_{W} = 1.8^{+0.4}_{-0.3} GeV$ •This can be compared with 2.085±0.042 world average

- Factor 10 worse
- But errors will improve

WARWICK

Systematic errors

•Few parametric ingredients:

- m_z
- m_w
- m_H
- Г_z
- Г_н

None of them contribute significantly

- Biggest is Γ_z which is known 20x better than Γ_z .
- •Theoretical uncertainty on $\Gamma(H \rightarrow WW)$ extraction is 0.5%
 - Again, negligible.

Conclusion

 The W boson width should not be ignored in Higgs boson coupling studies
 First LHC measurement of the W boson width! Γ_W=1.8^{+0.4}_{-0.3} GeV

- From Higgs branching ratios
- Assumes SM couplings
- I am asking Higgs/Pc whether I can publish
- Errors comparable to any other experiment
 - Factor 10 off world average
 - But will improve with time

 A proper measurement of the W width is needed to exploit Higgs measurements fully.

tt + X

Many searches look for tt plus more
ttV, SUSY, vector like quarks, ttH all have seaches where you add leptons or b quarks to a tt system.
Modelling is complex, but e.g. ttbb is known at NLO
So can we confidently predict SM backgrounds to such searches?

tt plus jets

CMS-PAS-TOP-16-008

- Excellent to have high quality data on this fast
 - But some work on understanding still...

ATLAS VLQ v CMS ttH

Both analyses select 1 lepton and at least 4 jets, at least 2 b tagged
Examine caterogires by numbers of jets, b jets and boosted jet candidates
ATLAS has problems with ttbb rates

- See 120% 190% of MC in these regions
- •Meanwhile CMS sees expected rate!
 - Modelling of this states is complicated

ATLAS VLQ v CMS ttH

WARWICK

VLQ – 2: 6j4b pre/post fit

WARWICK

ttH - multilepton

ttH

•Multilepton ttH analysis in 2012

- This channel is 3leptons and one b jet
- Plot shows Njets p₇>25GeV
- Again, factor 2 increase for 5+ jets

tt modelling

ttbb and tt+leptons are complex systems to model
tt+jets overall seems reaonably defined
ttbb:

- At 13 TeV in CMS looks plausibly modelled
- In ATLAS there is a factor 2 discrepancy
- •Can we treat ttbb shape and rate as independent?
- •3-leptons plus a b
 - Events with 5 or 6 jets have excesses at 8 and 13 TeV in CMS and 8 TeV in ATLAS.
 - Remember: tt+4 jets modelling gets tricky