Experience from Run-1 ATLAS SUSY searches:

Overview of techniques and approach

G. Redlinger, BNL

Experimental Challenges for the LHC Run II

KITP Santa Barbara

Outline

- Signal cross section and uncertainties
- Signal Monte Carlo
- Background estimation
- Search strategy and signal models

Outline

- Signal cross section and uncertainties
- Signal Monte Carlo
- Background estimation
- Search strategy and signal models

Rather than describing the techniques in detail, I will try to highlight some of the areas that are possibly less well under control

Signal cross section

- Cross section calculations follow state-of-the-art prescriptions of the LHC SUSY Cross Section Working group: link
- Squark/gluino cross sections via NLL-fast (also estimates scale, PDF and α_s uncertainties)
- For EWK processes, PROSPINO2 is used. Cross sections are recalculated for a range of scale, PDF and α_s variations.

Signal Modeling

- A mix of Herwig++ and MadGraph+Pythia6 in Run1. MadGraph samples generated with up to one extra parton in the matrix element. (Run2 samples are almost all in MadGraph with 2 extra partons).
- NLO models implemented in FeynRules for aMC@NLO are becoming available: link Also in POWHEG: here and here

Background estimation

Background estimation methods

- By far, this is the area on which experimentalists spend the most time/effort
- The techniques vary by analysis:
 - Pure MC estimation (usually for small backgrounds)
 - MC estimation, augmented by normalization to data in signaldepleted control regions, and cross-check in validation regions. Probably the most common method in Run1.
 - Analysis-specific methods exploiting particular features of the data with less reliance on the MC. Typically a lack of correlation between two variables is exploited to derive background templates and normalization from the data. Classic examples: fake lepton background, TOF vs dE/dx for slow particle searches

Background estimation

- A little history...
- Long before Run1, ATLAS SUSY group invested considerable effort in developing bkg estimation methods which had less reliance on MC (summarized in the "CSC Book")
- Early (and very pleasant) surprise of Run1 was just how well the MC does in describing the data

Background estimation

- A little history...
- "data driven" methods rely on MC to verify the technique (e.g. lack of correlations).
- A data-driven method is less "portable", i.e. often specific to a particular background of a particular analysis.
- ATLAS SUSY searches adopt MC-based bkg estimation techniques more generally, though very often in combination with crosschecks against selected data-driven methods.

Standard Model MC samples

Example from Run1 0-lepton 2-6 jets+MET analysis

Cross-section Generator PDF set Tune Process + frag./had. order in α_s W + jetsCT10 [30] SHERPA-1.4.0 [28] NNLO [29] SHERPA default ALPGEN-2.14 [31] W+jets (•) AUET2B [32] CTEQ6L1 [33] NNLO [29] + HERWIG-6.520 [34, 35] $Z/\gamma^* + jets$ NNLO [29] **CT10** SHERPA default SHERPA-1.4.0 ALPGEN-2.14 $Z/\gamma^* + jets (\bullet)$ NNLO [29] AUET2B CTEQ6L1 + HERWIG-6.520 **CT10** $\gamma + \text{jets}$ SHERPA-1.4.0 LO SHERPA default ALPGEN-2.14 $\gamma + jets(\bullet)$ LO AUET2B CTEQ6L1 + HERWIG-6.520 POWHEG-BOX-1.0 [36-38] Perugia2011C NNLO+NNLL [39, 40] $t\bar{t}$ CT10+ PYTHIA-6.426 [41] [42, 43]MC@NLO-4.03 [44, 45] $t\bar{t}$ (•) NNLO+NNLL [39, 40] AUET2B **CT10** Unified treatment + HERWIG-6.520 Single top of WWbb missing ACERMC-38 [46] t-channel NNLO+NNLL [47] AUET2B CTEQ6L1 + PYTHIA-6.426 MC@NLO-4.03 NNLO+NNLL [48, 49] CT10s-channel, WtAUET2B + HERWIG-6.520 MADGRAPH-5.0 [50] NLO [51-53] CTEQ6L1 $t\bar{t}$ +EW boson AUET2B + PYTHIA-6.426 Dibosons WW, WZ, ZZ,NLO [54, 55] SHERPA-1.4.0 SHERPA default **CT10** $W\gamma$ and $Z\gamma$

arXiv:1405.7875

Background estimation: bottom line

- Bottom line: Almost all observations have come out consistent with SM expectations
- Too few excesses than one would expect just from statistical fluctuations? Too conservative?
- Many "pull plots" exist. Difficult to interpret the distribution of pulls due to correlations.

Background estimation

- Opposite extreme: doubts linger about the reliability of MC in far tails of distributions.
 - Recipes for estimating theoretical uncertainties, e.g. scale variations, PS variations, don't seem completely rigorous
 - Experimental uncertainties in extreme phase space are usually not directly estimated and rely on extrapolation
- Would current methods stand up to a "stress test" in the event of an excess?
- Examine test case of the Z+jets+MET excess in ATLAS

ATLAS Z+jets+MET

Events / 2.5 GeV 14 Data ATLAS Standard Model $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ Flavour Symmetric Other Backgrounds SR-Z ee m(g), µ=(700, 200) GeV_ 0 m(q),u=(900.600)GeV 6 92 94 96 98 100 82 84 86 88 90 m_{II} [GeV]

arXiv:1503.03290

ATLAS-CONF-2015-082

Run1 ATLAS: 3σ excess seen in Z+jets+MET in the ee channel (1.7 σ in $\mu\mu$)

Not confirmed by CMS (cuts were different)

Run2 ATLAS: 2.2 σ excess with the same cuts as Run1

Not confirmed by CMS (with the same cuts at ATLAS)

ATLAS Z+jets+MET

Signal region definition

On-Z Region	E ^{miss} [GeV]	H _T [GeV]	<i>n</i> _{jets}	<i>m</i> _{<i>ℓℓ</i>} [GeV]	SF/DF	E ^{miss} sig. [√GeV]	$f_{ m ST}$	$\Delta \phi(\mathrm{jet}_{12}, E_\mathrm{T}^\mathrm{miss})$
Signal regions								
SR-Z	> 225	> 600	≥ 2	$81 < m_{\ell\ell} < 101$	SF	-	-	> 0.4

Backgrounds

Channel	SR-Z ee	$SR-Z \mu\mu$	SR-Z same-flavour combined
Observed events	16	13	29
Expected background events	4.2 ± 1.6	6.4 ± 2.2	10.6 ± 3.2
Flavour-symmetric backgrounds	2.8 ± 1.4	3.3 ± 1.6	6.0 ± 2.6
Z/γ^* + jets (jet-smearing)	0.05 ± 0.04	$0.02^{+0.03}_{-0.02}$	0.07 ± 0.05
Rare top	0.18 ± 0.06	0.17 ± 0.06	0.35 ± 0.12
WZ/ZZ diboson	1.2 ± 0.5	1.7 ± 0.6	2.9 ± 1.0 from M
Fake leptons	$0.1^{+0.7}_{-0.1}$	$1.2^{+1.3}_{-1.2}$	$1.3^{+1.7}_{-1.3}$

"Flavor symmetric" : mainly ttbar, but also WW, Wt, $Z \rightarrow \tau \tau$

Flavor-symmetric bkg estimation

• eµ control region with exactly the same cuts as the SR except for lepton flavor

- Subtract fake leptons (matrix method)
- Subtract other contributions (WZ, ZZ, tZ, ttW, ttZ, ttWW) based on MC
- Correct for lepton trigger/identification inefficiencies
- Crosscheck using ttbar normalized to data in CRT

Flavor-symmetric bkg estimation

Search Strategy

Search strategy

- R-parity conserving
 - Inclusive searches based on jets+MET, with variations on the presence of additional objects (leptons, bjets, ...). These are pretty generic, signature-based searches (HT and MET to a large extent), not heavily tuned to SUSY.
 - More specialized searches focusing on particular SUSY final states, optimized using simplified models.
 - Generally focused on prompt signatures
 - But can be sensitive to longer lifetimes, e.g. ATLAS-CONF-2014-037

Search strategy

- Long-lived signatures (by ATLAS SUSY and Exotics groups)
 - Decaying in tracker:
 - DV+X
 - non-pointing photons
 - disappearing track
 - Decaying in calorimeter:
 - DV+X
 - Detector stable:
 - slow (multi-)charged particle search via pixel dE/dx and/or muon TOF
 - stopped gluino search

ATLAS link

Search strategy

- Prompt R-parity violating
 - stop \rightarrow bs (λ''_{323})

 $W_{\not LRPV} = \frac{1}{2} \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \epsilon_i L_i H_2,$ $W_{\not BRPV} = \frac{1}{2} \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k.$

- eµ, eτ, µτ resonance (combination of λ'_{311} with non-zero λ_{132} or λ_{133} or λ_{233})
- multijets (UDD, λ''_{ijk})
- 4-lepton (mainly λ_{121} and λ_{122} with sensitivity also to λ_{133} or λ_{233})
- Reinterpretation of prompt RPC searches (LLE and LQD couplings)
- Many "exotic" decays are also sensitive (e.g. leptoquark searches) but not explicitly interpreted in RPV SUSY

Strategy assessment

- Coverage of the ATLAS SUSY searches has been examined in a number of pMSSM studies, for example
 - "3"-parameter model for squark production $(m_{\tilde{q}L}, M_1, M_2)$ with $M_1 = 60$ GeV and M_2 varied, or $M_2 = \frac{1}{2}(M_1 + m_{\tilde{q}L})$
 - "5"-parameter models for stop/sbottom (μ , M_1 , M_2) and 2 parameters from ($m_{\tilde{q}L3}$, $m_{\tilde{t}R}$, $m_{\delta R}$) reduced further by assumptions:
 - "naturalness inspired"
 - well-tempered neutralino
 - h/Z enriched
 - "4"-parameter models for EWK (μ , M₁, M₂, tan β) with M₁ = 50 GeV and tan β = 10
 - the whole shebang: full 19-parameter pMSSM scan (with experimental constraints applied, including Higgs mass and relic density)

ATLAS searches re-interpreted

Analysis	Ref.	Category
0 -lepton + 2–6 jets + $E_{\rm T}^{\rm miss}$	[58]	
0-lepton + 7–10 jets + $E_{\rm T}^{\rm miss}$	[59]	
1-lepton + jets + $E_{\rm T}^{\rm miss}$	[<mark>60</mark>]	
$\tau(\tau/\ell)$ + jets + $E_{\rm T}^{\rm miss}$	[61]	Inclusive
SS/3-leptons + jets + $E_{\rm T}^{\rm miss}$	[62]	
$0/1$ -lepton + 3b-jets + $E_{\rm T}^{\rm miss}$	[63]	
Monojet	[64]	
0-lepton stop	[65]	
1-lepton stop	[56]	
2-leptons stop	[66]	
Monojet stop	[67]	Third generation
Stop with Z boson	[68]	
$2b$ -jets + $E_{\rm T}^{\rm miss}$	[69]	
$tb+E_{\rm T}^{\rm miss}$, stop	[57]	
lh	[70]	
2-leptons	[54]	
2-τ	[55]	Flastrowask
3-leptons	[53]	Electioweak
4-leptons	[71]	
Disappearing Track	[72]	
Long-lived particle	[73, 74]	Other
$H/A ightarrow au^+ au^-$	[75]	Other

arXiv:1508.06608

arXiv:1508.06608

pMSSM-19: gluinos

Covered by monojet search

Gluinos are pretty solidly excluded below ~700 GeV.

Conclusions from simplified models match pretty well with pMSSM19 scans. Compressed region is an important (and well known) area of difficulty.

arXiv:1508.06608

pMSSM-19: squarks $(1^{st} \& 2^{nd})$

Lower production cross section in pMSSM:

- Break squark mass degeneracy
- d-type squarks suppressed by PDFs
- \tilde{u}_{r} and \tilde{d}_{r} form SU(2) doublet, degenerate in mass

 \tilde{q}_{R} tend to have longer decay chains via EWKino states

experlhc16, KITP Santa Barbar

pMSSM-19: stop/sbottom^{arXiv:1508.06608}

G. Redlinger

experlhc16, KITP Santa Barbara 25-Apr-16

arXiv:1508.06608

pMSSM-19: EWK

• Higgsino-like LSP implies small mass gap

Search strategy conclusion

- More careful scrutiny of low-mass survivors from the pMSSM-19 is ongoing
- Nevertheless, to first approximation, the pMSSM-19 study confirms mechanisms identified in the literature for weak areas in the ATLAS sensitivity:
 - Lower squark cross section by breaking mass degeneracy
 - Lower production cross section for Higgsinos
 - Compressed scenarios
 - Long decay chains (similar to "Stealth")
 - Multiple decay channels
- Perhaps reassuring that no additional mechanisms have been uncovered so far
 - Higgsino-like EWK sector with a decoupled strong sector remains very challenging
- Coverage as a function of NLSP lifetime seems ok?
- Coverage of RPV: difficult to assess systematically

BROO	KHÆVEN
NATIONAL	LABORATORY

PRIVATE BROOKHAVEN NATIONAL LABORATORY Scientific Staff Appraisal

Employee's Name: Job Title:	Susie Atlas
Manager's Name:	
Author:	

Life Number: Dept./Division: Period of Appraisal: Run1

Date Printed:

Manager's Evaluation of Employee

Approval: Approved

Section 1 - Scientific Staff Goals

Description/Milestones: Metrics :	Discover SUSY
Rating: Failed Supervisor Comments:	Methods and possible weaknesses have been discussed.
Employee Comments:	

Section 6 - Performance Summary and Overall Rating

Overall Rating: 1-Exceeded Expectations Supervisor Comments: Looking forward to Run2!

Employee Comments:

Backup material

3rd generation pMSSM models

arXiv:1506.08616

Model name	Parameters	Other parameter	Production	Typical
	scanned	settings	channels	decays
Naturalness- inspired pMSSM	350 GeV < $m_{\tilde{q}L3}$ < 900 GeV	$M_2 = 3\mu$	$pp \rightarrow \tilde{t}_1 \tilde{t}_1$	For $\mu = 110$ GeV, $m_{\tilde{q}L3} = 400$ GeV
	100 GeV < $\mu < m_{\tilde{q}L3} - 150$ GeV	$m_{\tilde{t}_{\rm R}}$ such that $M_S = 800 {\rm GeV}$	$pp \rightarrow \tilde{b}_1 \tilde{b}_1$	$\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 (33\%); \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0 (36\%)$
		\hat{A}_t such that $X_t/M_S = \sqrt{6}$		$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} (26\%); \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm} (70\%)$
				$\tilde{b}_1 \to b \tilde{\chi}_1^0 \ (16\%); \ \tilde{b}_1 \to b \tilde{\chi}_2^0 \ (13\%)$
			~ ~	
Well-tempered neutralino pMSSM	$310 \text{ GeV} < m_{\tilde{q}L3} < 810 \text{ GeV}$		$pp \rightarrow \underset{\tilde{\tau}}{t_1} \underset{\tilde{\tau}}{t_1}$	For $M_1 = 110$ GeV, $m_{\tilde{q}L3} = 410$ GeV
	110 GeV < $M_1 < m_{\tilde{q}L3} - 50$ GeV		$pp \rightarrow b_1 b_1$	$t_1 \to t \chi_2^0 (35\%); t_1 \to t \chi_3^0 (38\%)$
		$\mu \sim -M_1$		$t_1 \to b\chi_1^+ (20\%); b_1 \to t\chi_1^+ (85\%)$
		Similar to Naturalization in mind		$b_1 \to t_1 W (6\%); b_1 \to b\chi_2^{\circ} (4\%)$
	260 CeV < m < 760 CeV	for A manual M		Ear $M = 110 \text{ CaV}$ m $= 410 \text{ CaV}$
	$110 \text{ GeV} \le M_{\tilde{t}_{R}} \le 700 \text{ GeV}$	IOF $A_t, m_{\tilde{t}_R}$ of $m_{\tilde{q}L3}, m_3$	$pp \rightarrow \iota_1 \iota_1$	For $m_1 = 110 \text{ GeV}$, $m_{\tilde{t}_R} = 410 \text{ GeV}$
	110 GeV < $M_1 < m_{\tilde{q}L3} - 50$ GeV			$I_1 \to I\chi_2^{\circ} (17\%); I_1 \to I\chi_3^{\circ} (19\%)$
				$l_1 \to l\chi_1^- (0.1\%); l_1 \to b\chi_1^- (51\%)$
	250 GeV < $m_{\tilde{b}_{\pi}}$ < 750 GeV	$M_1 = 100 \text{ GeV}; M_2 = \mu$	$pp \rightarrow \tilde{b}_1 \tilde{b}_1$	For $\mu = 300$ GeV, $m_{\tilde{b}_{p}} = 400$ GeV
	100 GeV $< \mu < m_{\tilde{b}_{\mathrm{p}}}$	$m_{\tilde{t}_{\rm R}} = 1.6 \text{ TeV}; m_{\tilde{q}L3} = 1.2 \text{ TeV}$		$\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 (37\%); \tilde{b}_1 \xrightarrow{\kappa} b \tilde{\chi}_2^0 (39\%)$
	K	A_t fixed by $m_h \sim 125 \text{ GeV}$		$\tilde{b}_1 \rightarrow b \tilde{\chi}^0_3 (23\%)$
1/7 and the 1				$\tilde{\chi}_{2}^{0} \rightarrow Z \tilde{\chi}_{1}^{0} (29\%); \tilde{\chi}_{2}^{0} \rightarrow h \tilde{\chi}_{1}^{0} (71\%)$
h/Z-enriched				$\tilde{\chi}_{3}^{0} \to Z \tilde{\chi}_{1}^{0} (85\%); \tilde{\chi}_{3}^{0} \to h \tilde{\chi}_{1}^{0} (15\%)$
рМSSM	500 GeV $< m_{\tilde{q}L3} < 800$ GeV	$M_1 = 100 \text{ GeV}; M_2 = 1 \text{ TeV}$	$pp \rightarrow \tilde{t}_1 \tilde{t}_1$	For $\mu = 300$ GeV, $m_{\tilde{q}L3} = 600$ GeV
	100 GeV $< M_1 < m_{\tilde{q}L3}$ GeV	$m_{\tilde{b}_{\rm R}} = 3 \text{ TeV}; m_{\tilde{t}_{\rm R}} = 2 \text{ TeV}$	$pp \rightarrow \tilde{b}_1 \tilde{b}_1$	$\tilde{t}_1 \to t \tilde{\chi}_2^0 \ (46\%); \ \tilde{t}_1 \to t \tilde{\chi}_3^0 \ (39\%)$
		A_t fixed by $m_h \sim 125 \text{ GeV}$		$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} (11\%); \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm} (87\%)$
				$\tilde{\chi}_{2}^{0} \rightarrow Z \tilde{\chi}_{1}^{0} (24\%); \tilde{\chi}_{2}^{0} \rightarrow h \tilde{\chi}_{1}^{0} (76\%)$
				$\tilde{\chi}_{3}^{0} \to Z \tilde{\chi}_{1}^{0} (88\%); \tilde{\chi}_{3}^{0} \to h \tilde{\chi}_{1}^{0} (12\%)$