

Studies in Baryonic EFT

111× 8178:0

Nir Barnea

Living near unitarity, KITP UCSB May 2022

Jerusalem, Israel

A. Gal, B. Bazak, M. Schäfer, M. Bagnarol

CEA, Saclay, France

L. Contessi

Rez/Prague, Czech Republic J. Mareš

Introduction - the baryon octet

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Hyperon

A hyperon is a baryon containing one or

more strange quarks

Nir Damea (11031)

Introduction - the baryon octet

Hyperon

A hyperon is a baryon containing one or

more strange quarks

Nir Jamea (11031)

Introduction - the baryon octet

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Hyperon

A hyperon is a baryon containing one or

more strange quarks

Nir Damea (11031)

Study of Hypernuclei

Nuclei & Hypernuclei

≈3300 nuclear isotopes ≈40 single Lambda hypernuclei 3 double Lambda hypernuclei

In neutron stars

Hyperons softens the EOS Adding $\Lambda NN\text{-}\mathrm{force}$ stiffens the EOS

Lonardoni et al. PRL 114 (2015) 092301

Baryonic EFT

Baryonic EFT aka #EFT

• $B = n, p, \Lambda$ are the only dof.

 $\mathcal{L}_{QCD}(q,G) \longrightarrow \mathcal{L}_{\chi EFT}(B,\pi,K) \longrightarrow \mathcal{L}(B)$

- \mathcal{L} is expanded in powers of Q/M_h .
- Include contact terms and derivatives.
- Not too many parameters

$$\mathcal{L} = \mathbf{N}^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2m} \right) \mathbf{N} + \mathbf{\Lambda}^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2m} \right) \mathbf{\Lambda} \\ + \mathcal{L}_{2B} + \mathcal{L}_{3B} + \dots$$

The expansion parameter

Accuracy for light nuclei

Nuclei The pion mass is our breaking scale M_h

$$\left(\frac{Q}{M_h}\right) = \frac{\sqrt{2B_N M_N}}{m_\pi} \approx 0.5 - 0.8$$

Seems to work better in practice as $\Delta B(^4{\rm He})\approx 10\%$

Hypernuclei No OPE therefore breaking scale is $2m_{\pi}$

$$\left(\frac{Q}{M_h}\right) = \frac{\sqrt{2B_\Lambda M_\Lambda}}{2m_\pi} \approx 0.3$$

At LO accuracy goes as $(Q/M_h)^2$

Nir Barnea (HUJI)

Important lessons

- The effective range is bounded by the cutoff
- All orders but LO are perturbation (Kaplan, van Kolck, ...).

 $B_3 \propto \hbar \lambda^2 / m$.

2 The Thomas collapse Bedaque, Hammer, and van Kolck (1999)

- With LO 2-body interaction
- A 3-body counter term must be introduced at LO.

3 NLO - no end to surprises Bazak et al. (2019)

- At NLO the 4-body system is unstable.
- Conclusion: the 4-body force is promoted to NLO.

 $r_{\rm eff} \leq W/\lambda$

What do we have?

- LO and NLO #EFT fitted to low-energy experimental constraints
- No Coulomb
- Schrödinger equation

 $\left[T_{k}+V_{LO}+V_{NLO}\right]\left|\Psi\right\rangle=E\left|\Psi\right\rangle$

What do we want to know?

Bound states, resonances, scattering

How do we get there?

- Gaussian basis functions
- Few-body bound states \Rightarrow SVM
- Scattering \Rightarrow Busch formula
- Complex rotation, analytic continuation \Rightarrow Resonances

Just got this morning...

Nuclear scattering

Elastic s-wave scattering @NLO for $A\leq 5$

• Λ hypernuclei (${}^{A}_{\Lambda}Z$)

s-shell hypernuclei - overbinding of $^5_\Lambda {\rm He}$ Hypernuclear resonances

• $\Lambda\Lambda$ hypernuclei $\begin{pmatrix} A \\ \Lambda\LambdaZ \end{pmatrix}$ Onset of binding, A=4 or 5?

Charge symmetry breaking

The Dalitz von Hippel paramaters from SU(3) symmetry.

• Nucleons in a box

EFT matching of LQCD calcs.

The nuclear sector

LO #EFT

Leading order (LO): (exp. constraints) $a_0^{nn} = -18.95(40) \text{ fm}$ $a_1^{np} = 5.419(7) \text{ fm}$ $B(^{3}\text{H}) = 8.482 \text{ MeV}$

Effective range expansion :

$$k \cot g(\delta) = -\frac{1}{a} + \frac{1}{2}rk^2 + \dots$$

Leading order (LO):

(exp. constraints)

$$a_0^{nn} = -18.95(40) \text{ fm}$$

 $a_1^{np} = 5.419(7) \text{ fm}$
 $B(^3\text{H}) = 8.482 \text{ MeV}$

Next-to-leading order (NLO): (exp. constraints) $r_0^{nn} = 2.75(11)$ fm $r_1^{np} = 1.753(8)$ fm $B(^4\text{He}) = 28.296$ MeV

Few-body *s*-wave scattering

(Schafer, Bazak, Bagnarol)

Universality

Universal fermionic relations (STM, Petrov, Deltuva,...)

Atom-Dimer scattering

$$\frac{a_{ad}}{a_{aa}} = 1.1791 + 0.553 \frac{r_{aa}}{a_{aa}} \quad ; \quad \frac{r_{ad}}{a_{aa}} = -0.038 + 1.04 \frac{r_{aa}}{a_{aa}}$$

Dimer-Dimer scattering

$$\frac{a_{dd}}{a_{aa}} = 0.5986 + 0.105 \frac{r_{aa}}{a_{aa}} \quad ; \quad \frac{r_{dd}}{a_{aa}} = 0.133 + 0.51 \frac{r_{aa}}{a_{aa}}$$

These results are reproduced for spin saturated system:

- Neutron-Deuteron $S = \frac{3}{2}$ scattering
- Deuteron-Deuteron S = 2 scattering.

$n+d~(S=\frac{1}{2},T=\frac{1}{2})$ scattering

- Wear-threshold ³H* virtual state
 - \Rightarrow pole of S-matrix
- ② Near-threshold zero in S-matrix

$$\frac{1}{k \mathrm{cotg}(\delta) - \mathrm{i}k} = 0$$

$$\lim_{k \to k_0} k \cot g(\delta) = \pm \infty$$
 (1967)

 $\Rightarrow \mathsf{modified} \ \mathsf{ERE}$

(Oers and Seagrave, PLB 24, 11

 $\begin{array}{l} a_{n^2 \mathrm{H}}^{1/2} = \mathrm{0.29~fm} \\ r_{n^2 \mathrm{H}}^{1/2} = \mathrm{1.70~fm} \end{array}$

$$k \cot g(\delta) = A + B \ k^2 + \frac{C}{(1 + D \ k^2)}$$
; $a = -\frac{1}{A + C}$ and $r = 2B$

Nir Barnea (HUJI)

$n+d~(S=rac{1}{2},T=rac{1}{2})$ scattering - $^{3}\mathrm{H}^{*}$ virtual state universe to the measurement of the measurement of

Pole of S-matrix :

⇒ Effimov virtual state

 $a_{n^{2}H}^{c} = \frac{1}{2}a_{n^{2}H}^{1/2} + \frac{2}{2}a_{n^{2}H}^{3/2}$ **Coherent scattering length:** $(a_{22H}^{inc})^2 = \frac{1}{2} \left(a_{22H}^{1/2}\right)^2 + \frac{2}{2} \left(a_{22H}^{3/2}\right)^2$ Incoherent scattering length:

Total cross section (k = 0):

$$a_{n^{2}\mathrm{H}}^{inc} = \frac{1}{3} \left(a_{n^{2}\mathrm{H}}^{1/2} \right) + \frac{2}{3} \left(a_{n^{2}\mathrm{H}}^{3/2} \right)$$
$$\sigma_{t} = 4\pi \left[\left(a_{n^{2}\mathrm{H}}^{c} \right)^{2} + \left(a_{n^{2}\mathrm{H}}^{inc} \right)^{2} \right]$$

$n + {}^{2}\mathrm{H}$

- S. J. Nikitin et al. (First Geneva Conf. 2 (1955) 81) $a_{n^2\mu}^{1/2}$ and $a_{n^2\mu}^{3/2}$ limits (ortho/para hydrogen)
- W. Gissler (Z. Kristallographie 118 (1963) 149) $a_{n^2\mathrm{H}}^{1/2}/a_{n^2\mathrm{H}}^{3/2}$ ratio
- W. Dilg et al. (Phys. Lett. B 36 (1971) 208) total crosssection
- K. Schoen et al. (Phys. Rev. C 67 (2003) 044005) coherent scattering length (the most recent world average)

$n + {}^{2}\mathrm{H}$ scattering lengths

$n + {}^{3}\mathrm{H}$ and $n + {}^{3}\mathrm{He}$ scattering

Four different 4-body channels

S, T = (0, 1), (0, 0), (1, 1), (1, 0)

- No isospin breaking terms
- We do not distinguish between different 4-body T_z

A. $n + {}^{3}$ H ($T_{\tau} = -1$) :

 $S = 0 \longrightarrow (S = 0, T = 1)$ $S = 1 \longrightarrow (S = 1, T = 1)$

B. $n + {}^{3}$ He $(T_{z} = 0)$:

 $S = 0 \longrightarrow (S = 0, T = 0) + (S = 0, T = 1)^{-4} \text{He}(0^{+}_{2})$ resonance $S = 1 \longrightarrow (S = 1, T = 0) + (S = 1, T = 1)$

• for $n + {}^{3}$ He scattering we must include two different isospin channels Nir Barnea (HUJI)

Baryonic EFT for Light Nuclei and Hypernuclei 21 / 36

$n + {}^{3}\mathrm{H}$ and $n + {}^{3}\mathrm{He}$ scattering

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

• four-body force needed only in (S = 0, T = 0) channel

Nir Barnea (HUJI)

Zero energy $n + {}^{3}\text{H}$ and $n + {}^{3}\text{He}$ scattering experin

$n + {}^{3}\mathrm{H}$

0

(Phys. Rev. C (1972) 1952) coherent scatetring length, total crosssection

- T. W. Phillips et al. (Phys. Rev. C 22 (1980) 384) total crosssection
- S. Hammerschmied et al. (Z. Phys. A 302 (1981) 323) coherent scattering length
- H. Rauch et al. (Phys. Lett. B 165 (1985) 39) coherent scattering length

$n + {}^{3}\text{He}$

- V. P. Alfimenkov (Sov. J. Nucl. Phys 25 (1977) 607) total crosssection
- H. Kaiser et al. (Z. Phys. A 291 (1979) 231) cohherent scattering length
- **O. Zimmer et al.** (Eur. Phys. J. Direct A 1 (2002) 1) incoherent scattering length
- P.R. Huffman et al. (Phys. Rev. C 70 (2004) 014004) coherent scattering length
- W. Ketter et al. (Eur. Phys. J. A 27 (2006) 243) coherent scattering length
- M.G. Huber et al. (Phys. Rev. C 90 (2014) 064004) incoherent scattering length

Phys. Rev. C 42 (1990) 438; Phys. Rev. C 102 (2020) 034007; Few-Body Syst. 34 (2004) 105; Phys. Lett B 721 (2013) 355; Phys. Rev. C 68(R) (2003) 021002

$n + {}^{4}\text{He} s$ -wave scattering

Exp	a_0 [fm]	$r_{\rm eff}$ [fm]
Arndt 1973	2.4641 ± 0.0037	1.385 ± 0.041
Haun 2020	$2.4746^{\pm 0.0017}_{\pm 0.0011}$ [stat]	-

EFT for Λ hyperons

Data shrotage

- Limited scattering data
- No real low energy data
- Only 5 known bound states for $A \le 6$ (+mirror nuclei)
- No resonance data
- ...

Issues

- Contradicting results for life time and binding energy of $^3_{\Lambda}H$
- Charge symmetry breaking
- What is the onset of double Lambda binding?
- Stability of the Λnn system
- Overbinding of ⁵He
- ...

LECs, Strange and non strange

In short

23

It is possible to describe them all together. (No overbinding problem!)

 $^{5}_{\Lambda\Lambda}$ He Solidly bound! $B_{\Lambda}({}^{5}_{\Lambda\Lambda}\text{He}) = 1.14(1)^{+(44)}_{-(26)}$ nnΛ $nn\Lambda\Lambda$ nΛΛ Unbound

The ${}^5_{\Lambda}$ He binding energy

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM j,

 $B_{\Lambda}(^{5}_{\Lambda}He)$ vs. cut-off λ in LO $\not\!\!/ EFT$

L.Contessi N.Barnea A.Gal, PRL (2018)

With Alexander B scattering lengths $a_s, a_t \not = \mathsf{FT}$ reproduces $\mathsf{B}_\Lambda(^5_\Lambda\mathsf{He})$

Cut-off dependence

$$\frac{B_{\Lambda}(\lambda)}{B_{\Lambda}(\infty)} = 1 + \frac{\alpha}{\lambda} + \frac{\beta}{\lambda^2} + \dots$$

$^3_{\Lambda}\mathrm{H}^*(3/2^+)$

- no experimental evidence
- JLab C12-19-002 proposal

$\Lambda nn(1/2^+)$

- experiment (HypHI)
- JLab E12-17-003 experiment

Continuum states

 $\Lambda nn(\frac{1}{2}^+)$ - resonant state

- Question observable Ann resonance (physical Riemann sheet)
- Bound $\Lambda nn \Rightarrow$ serious disagreement with 4,5-body hypernuclei.

 $^3_\Lambda \mathrm{H}^*(\frac{3}{2}^+)$ - virtual state

- Virtual state from 0.02-0.25 MeV below the ²H + Λ threshold
- If bound \Rightarrow 4,5-body hypernuclei do not change much
- Pole sensitive to ΛN spin-singlet strength.

IACCC

 $\Rightarrow \delta(\kappa), \ \kappa = -ik = -i\sqrt{E}$

Charge symmetry breaking

A = 4 hypernuclear level scheme

- Charge symmetry: invarince under $n \leftrightarrow p$, e.g. ${}^{3}\text{H} \leftrightarrow {}^{3}\text{He}$
- Nuclei: for ${}^{3}\mathrm{He}$ ${}^{3}\mathrm{H}$, ΔE_{CSB} without Coulomb is about 70 keV
- For ³He ³H: $\Delta E_{CSB}/\Delta E \approx 0.01$
- Hypernuclei: CSB in ${}^{4}_{\Lambda}$ He- ${}^{4}_{\Lambda}$ H: $\Delta E_{CSB}/\Delta E \approx 0.22$

Nir Barnea (HUJI)

Charge symmetry breaking - χ EFT

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to $\Lambda - \Sigma^0$ mixing (left two diagrams) and $\pi^0 - \eta$ mixing (right diagram).

Fig. 2 CSB contributions from K^{\pm}/K^0 exchange (left) and from contact terms (right).

Λ	NLO13		NLO19	
	$C_s^{CSB}[{ m MeV^{-2}}]$	$C_t^{CSB} [{\rm MeV^{-2}}]$	$C_s^{CSB} [{\rm MeV^{-2}}]$	$C_t^{CSB} [{\rm MeV^{-2}}]$
500	4.691×10^{-3}	-9.294×10^{-4}	5.590×10^{-3}	-9.505×10^{-4}
550	6.724×10^{-3}	-8.625×10^{-4}	6.863×10^{-3}	-1.260×10^{-3}
600	9.960×10^{-3}	-9.870×10^{-4}	9.217×10^{-3}	-1.305×10^{-3}
650	1.500×10^{-2}	-1.142×10^{-3}	1.240×10^{-2}	-1.395×10^{-3}

Haidenbauer et al., Few-body sys. (2019) Baryonic EFT for Light Nuclei and Hypernuclei 33 / 36

Charge symmetry breaking - χEFT

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to $\Lambda - \Sigma^0$ mixing (left two diagrams) and $\pi^0 - \eta$ mixing (right diagram).

Fig. 2 CSB contributions from K^{\pm}/K^0 exchange (left) and from contact terms (right).

Λ	NL	D13	NL	O19
	$C_s^{CSB} [{\rm MeV^{-2}}]$	$C_t^{CSB} [{\rm MeV^{-2}}]$	$C_s^{CSB} [{\rm MeV^{-2}}]$	$C_t^{CSB} [{\rm MeV^{-2}}]$
500	4.691×10^{-3}	-9.294×10^{-4}	5.590×10^{-3}	-9.505×10^{-4}
550	6.724×10^{-3}	-8.625×10^{-4}	6.863×10^{-3}	-1.260×10^{-3}
600	9.960×10^{-3}	-9.870×10^{-4}	9.217×10^{-3}	-1.305×10^{-3}
650	1.500×10^{-2}	-1.142×10^{-3}	1.240×10^{-2}	-1.395×10^{-3}

Haidenbauer et al., Few-body sys. (2019) Baryonic EFT for Light Nuclei and Hypernuclei 33 / 36

Charge symmetry breaking - χ EFT

Fig. 1 CSB contributions involving pion exchange, according to Dalitz and von Hippel [1], due to $\Lambda - \Sigma^0$ mixing (left two diagrams) and $\pi^0 - \eta$ mixing (right diagram).

Fig. 2 CSB contributions from K^{\pm}/K^0 exchange (left) and from contact terms (right)

Λ	NL	D13	NL	O19
	C_s^{CSB} [MeV ⁻²]	$C_t^{CSB} [{\rm MeV^{-2}}]$	$C_s^{CSB} [{\rm MeV^{-2}}]$	$C_t^{CSB} [{\rm MeV^{-2}}]$
500	4.691×10^{-3}	-9.294×10^{-4}	5.590×10^{-3}	-9.505×10^{-4}
550	6.724×10^{-3}	-8.625×10^{-4}	6.863×10^{-3}	-1.260×10^{-3}
600	9.960×10^{-3}	-9.870×10^{-4}	9.217×10^{-3}	-1.305×10^{-3}
650	1.500×10^{-2}	-1.142×10^{-3}	1.240×10^{-2}	-1.395×10^{-3}

Haidenbauer et al., Few-body sys. (2019) Baryonic EFT for Light Nuclei and Hypernuclei 33 / 36

The Dalitz-von Hippel mechanism

We use ${
m SU}(3)_{
m f}$ to relate $C^S_{\Lambda N,\Sigma N}$ to the NN and ΛN LECs:

$$\begin{split} C^0_{\Lambda N,\Sigma N} &= -3(C^0_{NN}-C^0_{\Lambda N}),\\ C^1_{\Lambda N,\Sigma N} &= (C^1_{NN}-C^1_{\Lambda N}). \end{split}$$

Nir Barnea (HUJI)

The Dalitz-von Hippel mechanism

We use SU(3)_f to relate $C^{S}_{\Lambda N,\Sigma N}$ to the NN and ΛN LECs:

$$\begin{split} C^0_{\Lambda N,\Sigma N} &= -3(C^0_{\Lambda N}-C^0_{\Lambda N}),\\ C^1_{\Lambda N,\Sigma N} &= (C^1_{\Lambda N}-C^1_{\Lambda N}). \end{split}$$

Nir Barnea (HUJI)

Baryonic EFT for Light Nuclei and Hypernuclei 34 / 36

Extracting the DvH parameter

Method/Input	$-\mathcal{A}_{I=1}$
SU(3) _f [DvH64]	0.0148 ± 0.0006
LQCD [LQCD20]	0.0168 ± 0.0054
$\#$ EFT(LO)/ χ EFT(LO) [Polinder06]	0.0139 ± 0.0013
$\#$ EFT(LO)/ χ EFT(NLO) [Haidenbauer13]	0.0168 ± 0.0014

Conclusions

STRONG@HUJI

