NonRelativistic UnParticles

Eric Braaten
Ohio State University

NonRelativistic UnParticles

Relativistic Unparticles Georgi

Phys. Rev. Lett. 98, 221601 (2007) [hep-ph/0703260]

NonRelativistic Unparticles Hammer & Son

Proc.Nat.Acad.Sci. 118 (2021)

[arXiv:2103.12610]

Neutrons are Unparticles!

Neutral charm mesons are Unparticles! Braaten & Hammer

Phys. Rev. Lett. 128, 032002 (2022) [arXiv:2107.03821]

- Q. What is an elementary particle?
- A. Irreducible representation of the Poincare group

particle is characterized by mass m and spin s

Poincare group

includes 4 spacetime translations

3 rotations

3 Lorentz boosts

10 dimensions

Standard Model of Particle Physics: SU(3)xSU(2)xU(1) gauge theory

17 elementary particles

s = 0: Higgs boson

s = 1/2: 6 quarks, 6 leptons

s = 1: photon, gluon, W^{\pm} , Z^{0}

Beyond the Standard Model ??

more elementary particles?

new interactions?

Hidden Sector ??

with no Standard Model interactions

"Unparticle Physics" Howard Georgi hep-ph/0703260

Hidden sector could be scale invariant theory with conformal symmetry excitations are "unparticles"

- Q. What is an unparticle?
- A. Irreducible representation of the conformal group unparticle is characterized by scaling dimension Δ

Conformal group includes 4 spacetime translations

- 3 rotations
- 3 Lorentz boosts
- 1 scale transformation
- 4 spacetime inversions
- 5 15 dimensions

Observation of Unparticles

Unparticle in a hidden sector cannot be observed <u>directly</u>
However it can be observed <u>indirectly</u>
if it is produced in association with a <u>Standard Model particle</u>

Invariant mass-squared P_{U^2} of Unparticle can be measured using recoil momentum of Standard Model particle

$$d\sigma/dP_U^2 \sim (P_U^2)^{\Delta - 2}$$

Unparticle signature: power-law dependence on P_U^2 exponent Δ determined by conformal symmetry

For N massless particles, $\Delta = N$. For Unparticle, Δ can be <u>noninteger</u>

Searches for Unparticles at the LHC

CMS collaboration arXiv:1408.3583, 1511.09375, 1701.02402

production of Unparticle in association with Z⁰

Unparticle invariant mass distribution

$$d\sigma/dP_U^2 \sim (P_U^2)^{\Delta-2}$$

CMS: "95% confidence limits are obtained on the effective cutoff scale as a function of the scaling dimension"

NonRelativistic Effective Field Theories

NREFT can have Galilean symmetry

if kinetic mass is conserved in every reaction

Galilean group includes 4 spacetime translations

3 rotations

3 Galilean boosts

1 phase transformation

11 dimensions

phase symmetry guarantees mass conservation

- Q. What is a Galilean particle?
- A. Irreducible representation of the Galilean group characterized by kinetic mass M, spin s

Unparticles can rise in nonrelativistic effective field theories

- Q. What is a nonrelativistic unparticle?
- A. Irreducible representation of nonrelativistic conformal group

unparticle is characterized by kinetic mass M, scaling dimension Δ

nonrelativistic conformal (Schroedinger) group

includes 4 spacetime translations

- 3 rotations
- 3 Galilean boosts
- 1 phase transformation
- 1 scale transformation
- 1 time inversion

9 13 dimensions

Neutrons with opposite spins

have large scattering length a = -19 fm and enormous cross section at low energy (accidental fine tuning of QCD makes dineutron almost bound)

radius of neutron: 0.8 fm

radius of cross section: 20 fm

Interactions between low-energy neutrons are approximately scale invariant!

Low-energy neutrons can be described by nonrelativistic conformal field theory

Neutrons are Unparticles!

For *N* weakly interacting particles, $\Delta = (3/2)N$. For Unparticle, Δ can be noninteger

mass	scaling dimension

1 neutron: m_n $\Delta_1 = 3/2$

2 neutrons: $2m_n$ $\Delta_2 = 2$

3 neutrons: $3m_n$ $\Delta_3 = 4.27272$

4 neutrons: $4m_n$ $\Delta_4 \approx 5.1$

Cold Atom analog:

fermionic atoms with 2 spin states tuned to Feshbach resonance

Nuclear reaction $A_1 A_2 \rightarrow B + (N n)$

creates N neutrons near their threshold with invariant mass N m_n + E and substantial recoil momentum from nucleus B

Energy distribution of neutrons can be measured using recoil momentum of nucleus *B*

$$\frac{d\sigma}{dE} \sim E^{\Delta_N - 5/2}$$

Unparticle signature: power-law behavior with exponent Δ_N determined by conformal symmetry

Nuclear reaction $\pi^ ^3H \rightarrow \gamma + (3 n)$ creates 3 neutrons with invariant mass 3 m_n + E with $E \ll m_{\pi^2}/2M_n$

$$\frac{d\sigma}{dE_{3n}} \sim (E_{3n})^{1.77272}$$

Signature for 3-neutron unparticle: power-law behavior with exponent 1.77272 (naive exponent is 3.0)

"UnNuclear Physics"

Nuclear reaction $AB \rightarrow C + (4n)$

creates 4 neutrons with small invariant mass $4 m_n + E$ with $E \ll m_{\pi^2}/2M_n$ and large recoil momentum

Signature for 4-neutron unparticle: power-law behavior with exponent 2.6 (naive exponent is 5.5)

Low-energy neutral charm mesons are Unparticles! arXiv:2107.03821

with H.-W. Hammer

Neutral charm mesons

```
spin 0: D^0 = c\overline{u}, \overline{D}^0 = \overline{c}u mass: M = 1865 MeV
```

spin 1: $D^{*0} = c\bar{u}$, $\bar{D}^{*0} = \bar{c}u$ mass: $M_* = 2007$ MeV

X(3872) resonance in $D^{*0}\bar{D}^{0}+D^{0}\bar{D}^{*0}$ channel

- ⇒ bosons with large positive scattering length but no Efimov effect
- → neutral charm mesons are Unparticles!

reaction rates with power-law behavior

- for multiple charm mesons (different scaling dimensions)
- for X(3872) + charm mesons (new reactions)

exponents determined by conformal symmetry !!

Cold Atom analog:

bosonic atoms with 2 spin states A, A' and Feshbach resonance in channel A'A + A'A

$$X(3872) = \chi_{c1}(3872)$$

discovered at e+e- collider Belle 2003 $B^{\pm} \rightarrow K^{\pm} X$, $X \rightarrow J/\psi \pi^{+}\pi^{-}$

- quantum numbers $J^{PC} = 1^{++}$ LHCb 2013
- mass is extremely close to $D^{*0}\bar{D}^0$ threshold $E_X = M_X - (M_{D^{*0}} + M_{D^0}) = (-0.07 \pm 0.12)$ MeV LHCb 2020 $|E_X| < 0.22$ MeV at 90% CL
- width is extremely narrow $\Gamma_X = (0.22 \pm 0.14) \text{ MeV}$ LHCb 2020
- 7 observed decay modes $J/\psi \pi^+\pi^-$, $J/\psi \pi^+\pi^-\pi^0$, $J/\psi \gamma$, $\psi(2S) \gamma$, $\chi_{c1} \pi^0$, $D^0 \bar{D}^0 \gamma$, $D^0 \bar{D}^0 \pi^0$

first of dozens of exotic heavy hadrons that have been discovered since 2003!

What is the X(3872)?

experimental inputs: $J^{PC} = 1^{++}$ and $|E_X| < 0.22$ MeV

resonant S-wave interactions
with pairs of neutral charm mesons
transform X into loosely bound molecule!!

$$X(3872) = (D^{*0}\bar{D}^{0} + D^{0}\bar{D}^{*0})/\sqrt{2}$$

small additional components

at long distances: $D^0 \bar{D}^0 \pi^0$

at short distances:

charged charm mesons $D^{*+}D^{-} + D^{+}D^{*-}$ P-wave charmonium $\chi_{c1}(2P)$?? compact tetraquark $[cq][\bar{c}\bar{q}]$??

Point Production of D*0D0

integral equation for production amplitude for $D^{*0}D^{0}$ from creation of charm mesons at a point

solve algebraically:

Production rate as function of the energy *E*: $dR/dE \sim |\mathscr{A}(E)|^2 \sqrt{E}$

high energy scaling behavior: $dR/dE \sim E^{-1/2}$

Scattering of X(3872) and Charm Meson

Canham, Hammer & Springer arXiv:0906.1263

numerical solution of STM integral equation for $XD \rightarrow XD$ ($D = D^0$ or D^{*0})

low energy: $\sigma(E=0) = 4\pi a_{DX}^2$

huge scattering lengths: $a_{D^0X}=-9.7\,a,\ a_{D^{*0}X}=-16.6\,a$

0.01

 $E/|\epsilon_x|$

high energy scaling behavior: $\sigma(E) \sim E^{-1.6}$ power-law with approximately same exponent for $X D^0$, $X D^{*0}$

Point Production of X(3872) + Charm Meson

STM integral equation for production of XD ($D = D^0$ or D^{*0})

from creation of charm mesons at a point

production rates *dR/dE* as function of energy *E*

low energy: determined by huge scattering length aDX

high energy scaling behavior: $dR/dE \sim E^{+0.08}$ power-law with approximately same exponent for XD^0 , XD^{*0}

Low-energy neutral charm mesons are Unparticles! arXiv:2107.03821 with H.-W. Hammer

in the limit $a \rightarrow \infty (\varepsilon_X \rightarrow 0)$

Effective Field Theory for neutral charm mesons is scale invariant ⇒ Nonrelativistic Conformal Field Theory!

X unparticle

operator with scaling dimension $\Delta_2 = 2$ creates $D^{*0} + \overline{D}^{0}$, $D^{0} + \overline{D}^{*0}$, and X(3872)

XD unparticle

operator with scaling dimension $\Delta_3 = 3.1012^{D^{*0}}$ creates $D^{*0} + \bar{D}^0 + D^0$, $D^0 + \bar{D}^{*0} + D^0$, $D^0 + \bar{D}^{*0} + D^0$, and $X(3872) + D^0$

XD* unparticle

operator with scaling dimension $\Delta_{3*} = 3.0870$ creates $D^{*0} + \bar{D}^{0} + D^{*0}$, $D^{0} + \bar{D}^{*0} + D^{*0}$, and $X(3872) + D^{*0}$

Scaling Dimension: X Unparticle

integral equation for production amplitude for $D^{*0}\bar{D}^{0}$ from creation of charm mesons at a point

solve algebraically:

$$\mathcal{A}(E) = \frac{1}{-1/a + \sqrt{-2\mu(E + i\epsilon)}}$$

scale-invariant limit:
$$a \to \infty \Rightarrow \mathcal{A}(E) \sim |E|^{-1/2}$$

 $\mathcal{A}(E) \sim |E|^{\Delta-5/2} \Rightarrow \Delta = 2$

X Unparticle has scaling dimension $\Delta_2 = 2$

Scaling Dimensions: XD, XD* Unparticles

homogeneous STM integral equation for production of XD ($D = D^0$ or D^{*0}) with large relative momentum $p \gg \sqrt{2\mu} E$

look for power-law solution: $\mathcal{A}(p) = p^{s-1}$

$$1 = \frac{\sin(s\arcsin(r))}{2r\sqrt{1 - r^2}s\cos(s\pi/2)}$$

smallest positive solution: s = 0.60119 if $D = D^0$ s = 0.51834 if $D = D^{*0}$

operator dimension: $\Delta = 5/2 + s$

XD Unparticle has scaling dimension $\Delta_3 = 3.10119$ XD* Unparticle has scaling dimension $\Delta_{3*} = 3.08697$

Propagators for Unparticles

primary operator $\phi_n(x)$: scaling dimension Δ_n , mass M_n

propagator is determined by conformal symmetry

spacetime propagator: $\langle \phi_n(x_1) \phi_n^{\dagger}(x_2) \rangle = C_n \, \theta(t_{12}) \, (t_{12})^{-\Delta_n} \, \exp(i M_n r_{12}^2 / 2t_{12})$

Fourier transform has branch cut: $D_n(E,p) = C_n' \left(\frac{p^2}{2M_n} - E - i\epsilon \right)^{\Delta_n - 5/2}$

AdS/CFT correspondence: spacetime is boundary of anti-deSitter space

Unparticle propagator is free-field propagator in AdS space

Correlator for Three Operators

primary operators $\phi_1(x)$, $\phi_2(x)$, $\phi_3(x)$: scaling dimensions Δ_1 , Δ_2 , Δ_3 masses M_1 , M_2 , $M_3 = M_1 + M_2$

3-point function is determined by conformal symmetry!

Henkel and Unterberger 1993 Fuertes and Morozov 2009 Volovich and Wen 2009

$$\langle \phi_1(x_1)\phi_2(x_2)\phi_3^{\dagger}(x_3)\rangle = C_{12,3} \,\theta(t_{13}) \,(t_{13})^{-\Delta_{13,2}/2} \,\exp(iM_n r_{13}^2/2t_{13}) \\ \times \,\theta(t_{23}) \,(t_{23})^{-\Delta_{23,1}/2} \,\exp(iM_n r_{23}^2/2t_{23}) \\ \times \,(t_{12})^{-\Delta_{13,2}/2} \,\Phi(w)$$

$$\Delta_{ij,k} = \Delta_i + \Delta_j - \Delta_k$$

 $\Phi(\omega)$ is function of single scaling variable $w=\frac{r_{12}^z}{2t_{12}}-\frac{r_{13}^z}{2t_{13}}+\frac{r_{23}^z}{2t_{23}}$ 2-dimensional integral representation

$$\Phi(w) = \int_{-\infty}^{+\infty} du (u + i\epsilon)^{-\Delta_{13,2}/2} e^{-iM_1 u}$$

$$\times \int_{-\infty}^{+\infty} dv (v + i\epsilon)^{-\Delta_{23,1}/2} e^{-iM_2 v} \left[u - v + (1 + i\epsilon) w \right]^{-\Delta_{12,3}/2}$$
25

Correlator for Three Operators

 $\langle \phi_1(x_1)\phi_2(x_2)\phi_3^{\dagger}(x_3)\rangle$ is determined by conformal symmetry!

Henkel and Unterberger 1993 Fuertes and Morozov 2009 Volovich and Wen 2009

- Fourier transform in time
- Fourier transform in space
- isolate pole from particle propagator $D_1(E_1,p_1) = i/(E_1 p_1^2/2M_1)$
- isolate branch cut from 2-Unparticle propagator

$$D_2(E_2, p_2) = C_2 \left(\frac{p_2^2}{2M_2} - E_2 - i\epsilon\right)^{\Delta_2 - 5/2}$$

3-point function at large momentum $p_1 = p_2 = p$

$$G(E_1, E_2, p) \longrightarrow (\text{constant}) D_1(E_1, p_1) D_2(E_2, p_2) p^{\Delta_3 - \Delta_1 - \Delta_2}$$

Point Production of Unparticle

production rate of 2-Unparticle recoiling against particle from the creation of a 3-Unparticle at a point with energy E_3 in its CM frame

amputated 3-point function $G_{amp}(E_2,p)$

- multiply by complex conjugate: $|G_{amp}(E_2,p)|2$
- multiply by discontinuity in propagator of particle

$$D_1(E_1 + i\epsilon, p) - D_1(E_1 - i\epsilon, p) = 2\pi\delta(E_2 - p^2/2M_2)$$

multiply by discontinuity in propagator of 2-Unparticle

$$D_2(E_2 + i\epsilon, p) - D_2(E_2 - i\epsilon, p) = \frac{1}{\sqrt{E_2 - p^2/2M_2}} \theta \left(E_2 - \frac{p^2}{2M_2} \right)$$

• integrate over phase space: $\int dE_1 d^3p/(2\pi)^4$

behavior near the threshold $E_3 > p^2/2M_{12}$

$$dR \longrightarrow C \left(E_3 - \frac{p^2}{2M_{12}} \right)^{\Delta_2 - 5/2} \left(\frac{p^2}{2M_{12}} \right)^{\Delta_3 - \Delta_1 - \Delta_2} \frac{d^3p}{(2\pi)^3}$$

Point Production of $X(3872)+D^{0}$

finite charm-meson pair scattering length

- breaks conformal symmetry
- 3-Unparticle develops bound state + particle component
- 2-Unparticle propagator is modified by bound-state energy εχ

discontinuity in 2-Unparticle propagator

$$D_{2}(E_{2} + i\epsilon, p) - D_{2}(E_{2} - i\epsilon, p) = \frac{\sqrt{E_{2} - p^{2}/2M_{2}}}{E_{2} - p^{2}/2M_{2} + |\varepsilon_{X}|} \theta \left(E_{2} - \frac{p^{2}}{2M_{2}}\right) + 2\pi\sqrt{|\varepsilon_{X}|} \delta \left(E_{2} - \frac{p^{2}}{2M_{2}} + |\varepsilon_{X}|\right)$$

rate for producing bound state + particle: keep δ-function term

$$dR \longrightarrow (\text{constant}) \sqrt{|\varepsilon_X|} E_3^{\Delta_3 - \Delta_2 - \Delta_1 - 1/2} dE_3$$

Point Production of Bound State + Particle

production rate *dR/dE* as function of energy *E*

dR/dE has power-law behavior at high energy

exponent is determined by conformal symmetry!!

$$\Delta_3 - \Delta_2 - \Delta_1 + \frac{1}{2} = +0.1012$$
 for XD^0

$$\Delta_{3*}$$
 - Δ_{2} - Δ_{1} + $\frac{1}{2}$ = +0.0870 for XD^{*0}

Scattering of X(3872) and Charm Meson

 $\sigma(E)$ has power-law behavior at high energy

is exponent determined by conformal symmetry?

can it be derived from 4-point function $\langle \phi_1(x_1)\phi_2(x_2)\phi_1^{\dagger}(x_3)\phi_2^{\dagger}(x_4)\rangle$ in nonrelativistic conformal field theory ?

X Unparticle

Χ(3872) ψ " ψ

Babar collaboration arXiv:1911.11740

inclusive decays $B^{\pm} \rightarrow K^{\pm} + (anything)$

measure distribution of K recoil momentum p

peak from $D^{*0}+D^{0}$, $D^{0}+D^{*0}$ below $p_{\rm max}=114\overline{1}$ MeV power-law behavior determined by $\Delta_{2}=2$ $d\Gamma/dp\sim(p_{\rm max}-p)^{-1/2}$

can it be observed by Belle II collaboration? will collect larger data set by factor of 40

XD and XD* Unparticles

production of XD or XD* unparticles
requires creation of two cc pairs
sufficient rate only for prompt production at Large Hadron Collider

no trigger for events with 3 charm mesons need $X(3872) \rightarrow J/\psi \pi^+\pi^-$, $J/\psi \rightarrow \mu^+\mu^-$ to provide trigger

XD unparticle

observe through $X(3872)+D^0$ component with decay $D^0 \rightarrow K^-\pi^+$ production rate with energy dependence $E^{+0.1012}$

can it be observed by LHCb collaboration?

Summary

Nonrelativistic Unparticle

excitation created by an operator with definite scaling dimension in a Nonrelativistic Conformal Field Theory

Low-energy neutrons are Unparticles!

because dineutron is almost bound Hammer & Son arXiv:2103.06290

Low-energy neutral charm mesons are Unparticles!

because of X(3872) resonance Braaten & Hammer arXiv:2107.03821

X unparticle: can be observed through K recoil momentum distribution

in inclusive decays $B^{\pm} \rightarrow K^{\pm} + (anything)$

XD unparticle: may be observable

in prompt production of X(3872) Do at LHC

Can Unparticle behavior be observed in ultracold atoms ??