Multichannel nature of few-body interactions in ultracold atomic systems and chemical reactions

Jose P. D'Incao

JILA, NIST, and Department of Physics, University of Colorado at Boulder, Boulder, CO

This talk...

Paul Julienne (NIST/JQI)

This talk...

Paul Julienne (NIST/JQI)

van der Waals Universality

Refers to the Efimov physics obtained using (single channel) vdW interactions, -C6/r^6, leading to a three-body parameter depending only on rvdW.

Theory:

Wang, D'Incao, Esry, Greene, PRL 108, 263001 (2012) Naidon, Endo, Ueda, PRA 90, 022106 (2014) Schmidt, Rath, Zwerger, EPJB 85, 386 (2012)

van der Waals Universality

van der Waals Universality

van der Waals Universality

Atom-Atom Interaction

$$\hat{V}(r) = \sum_{SM_S} |SM_S\rangle V_S(r) \langle SM_S|$$

[Singlet: $V_{S=0}(r) \equiv V_S(r)$, Triplet: $V_{S=1}(r) \equiv V_T(r)$]

Atom-Atom Interaction

$$\int_{^{39}\mathrm{K}}^{|f_1, m_{f_1}\rangle} \hat{V}(r) = \sum_{SM_S} |SM_S\rangle V_S(r) \langle SM_S|$$

[Singlet: $V_{S=0}(r) \equiv V_S(r)$, Triplet: $V_{S=1}(r) \equiv V_T(r)$]

PS.: rvdW is not the only shortrange length scale. In general r_vdW>>r_ex, (no V3B) but **not always!**

Atom-Atom Interaction

$$\int_{^{39}\mathrm{K}} \int_{^{39}\mathrm{K}} \int_{^{39}\mathrm{K}} \hat{V}(r) = \sum_{SM_S} |SM_S\rangle V_S(r) \langle SM_S|$$

[Singlet:
$$V_{S=0}(r) \equiv V_S(r)$$
, Triplet: $V_{S=1}(r) \equiv V_T(r)$]

"Reduced" Atom-Atom Interaction

Reduced Model (1st generation)

$$V_{S/T}(r) = -\frac{C_6}{r^6} \left(1 - \frac{\lambda_{S/T}^6}{r^6}\right)$$

$$\{\lambda_S, \lambda_T\} \to \{a_S, a_T\}$$

Atom-Atom Interaction

$$\hat{V}(r) = \sum_{SM_S} |SM_S\rangle V_S(r) \langle SM_S|$$

[Singlet:
$$V_{S=0}(r) \equiv V_S(r)$$
, Triplet: $V_{S=1}(r) \equiv V_T(r)$]

"Reduced" Atom-Atom Interaction

Reduced Model (1st generation)

$$V_{S/T}(r) = -\frac{C_6}{r^6} \left(1 - \frac{\lambda_{S/T}^6}{r^6}\right)$$

$$\{\lambda_S, \lambda_T\} \to \{a_S, a_T\}$$

...has some limitations (spin physics)

Reduced Model (2nd generation)

$$V_{S/T}(r) = V_{S/T}^{*}(r) + \frac{\lambda_{S/T}^{6}}{r^{12}}$$

 $V_{S/T}^*$: ab initio $\{\lambda_S, \lambda_T\} \to \{a_S, a_T\}$

Atom-Atom Interaction

39K Feshbach Resonance

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

_	Observables for $a < 0$		Observables for $a > 0$				
	$a_{-}^{(0)}/a_{0}$	$\eta^{(0)}_{-}$	$a_{*}^{(1)}/a_{0}$	$\pmb{\eta}_*^{(1)}$	$a_{+}^{(0)}/a_{0}$	$\eta_+^{(0)}$	
vdW	-626		213		90		
MC-vdW	-846(19)	0.21(1) [31]	809(1)	0.27(3)	200(1)	0.10(1)	
Exp.	-908(11)	0.25(1) [31]	884(14)	0.28(2)	246(6)	0.20(2)	

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

Xie , Van de Graaff, Chapurin, Frye, Hutson, D'Incao, Julienne, Ye, Cornell, PRL 125, 243401 (2020)

Three-body Recombination (a>0)

	Observables for $a < 0$		Observables for $a > 0$			
	$a^{(0)}_{-}/a_{0}$	$\eta^{(0)}_{-}$	$a_{*}^{(1)}/a_{0}$	$\pmb{\eta}_*^{(1)}$	$a_{+}^{(0)}/a_{0}$	$\eta_+^{(0)}$
vdW	-626		213		90	
MC-vdW	-846(19)	0.21(1) [31]	809(1)	0.27(3)	200(1)	0.10(1)
Exp.	-908(11)	0.25(1) [31]	884(14)	0.28(2)	246(6)	0.20(2)

Inelasticity Parameter (short-range physics) Hyperfine Structure is important!

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

Xie , Van de Graaff, Chapurin, Frye, Hutson, D'Incao, Julienne, Ye, Cornell, PRL 125, 243401 (2020)

Atom-molecule Relaxation (a>0)

	Observables for $a < 0$		Observables for $a > 0$			
	$a_{-}^{(0)}/a_{0}$	$\eta^{(0)}_{-}$	$a_{*}^{(1)}/a_{0}$	$\pmb{\eta}_*^{(1)}$	$a_{+}^{(0)}/a_{0}$	$\eta_+^{(0)}$
vdW	-626		213		90	
MC-vdW	-846(19)	0.21(1) [31]	809(1)	0.27(3)	200(1)	0.10(1)
Exp.	-908(11)	0.25(1) [31]	884(14)	0.28(2)	246(6)	0.20(2)

Trimer Binding Energy (Ed-Et)

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

Xie, Van de Graaff, Chapurin, Frye, Hutson, D'Incao, Julienne, Ye, Cornell, PRL 125, 243401 (2020)

Atom-molecule Relaxation (a>0)

	Observables for $a < 0$		Observables for $a > 0$			
	$a_{-}^{(0)}/a_{0}$	$\eta^{(0)}_{-}$	$a_{*}^{(1)}/a_{0}$	$\eta_*^{(1)}$	$a_{+}^{(0)}/a_{0}$	$\eta_+^{(0)}$
vdW	-626		213		90	
MC-vdW	-846(19)	0.21(1) [31]	809(1)	0.27(3)	200(1)	0.10(1)
Exp.	-908(11)	0.25(1) [31]	884(14)	0.28(2)	246(6)	0.20(2)

39K3 Efimov states are "anomalous"

Precision Test of the Limits to Universality in Few-Body Physics Chapurin, Xie, Van de Graaff, Popowski, D'Incao, Julienne, Ye, and Cornell, PRL 123, 233402 (2019)

Observation of Efimov Universality across a Nonuniversal Feshbach Resonance in 39K

87Rb/85Rb Three-body Recombination (initiated on KITP-2016)

Accessing Final Products

State-to-state chemistry for three-body recombination in an ultracold rubidium gas Wolf, Deiß, Krükow, Tiemann, Ruzic, Wang, D'Incao, Julienne, and Denschlag Science 358 921 (2017)

(Hyperspherical potentials for 87Rb3 atoms)

As usual, the experiment prepares a ultracold sample of ultracold Rubidium atoms in a specific hyperfine state

DRb

Accessing Final Products

State-to-state chemistry for three-body recombination in an ultracold rubidium gas Wolf, Deiß, Krükow, Tiemann, Ruzic, Wang, D'Incao, Julienne, and Denschlag Science 358 921 (2017)

Accessing Final Products

State-to-state chemistry for three-body recombination in an ultracold rubidium gas Wolf, Deiß, Krükow, Tiemann, Ruzic, Wang, D'Incao, Julienne, and Denschlag Science 358 921 (2017)

Accessing Final Products

State-to-state chemistry for three-body recombination in an ultracold rubidium gas Wolf, Deiß, Krükow, Tiemann, Ruzic, Wang, D'Incao, Julienne, and Denschlag Science 358 921 (2017)

Accessing Final Products

State-to-state chemistry for three-body recombination in an ultracold rubidium gas Wolf, Deiß, Krükow, Tiemann, Ruzic, Wang, D'Incao, Julienne, and Denschlag Science 358 921 (2017)

Accessing Final Products

State-to-state chemistry for three-body recombination in an ultracold rubidium gas Wolf, Deiß, Krükow, Tiemann, Ruzic, Wang, D'Incao, Julienne, and Denschlag Science 358 921 (2017)

Energy-scaling Propensity Rule

Energy-scaling of the product state distribution for three-body recombination of ultracold atoms Haze, D'Incao, Dorer, Li, Deiß, Tiemann, Julienne, and Denschlag in preparation (2022)

Energy-scaling Propensity Rule

Energy-scaling of the product state distribution for three-body recombination of ultracold atoms Haze, D'Incao, Dorer, Li, Deiß, Tiemann, Julienne, and Denschlag

in preparation (2022)

Energy-scaling Propensity Rule

Energy-scaling of the product state distribution for three-body recombination of ultracold atoms Haze, D'Incao, Dorer, Li, Deiß, Tiemann, Julienne, and Denschlag in preparation (2022)

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms Haze, D'Incao, Dorer, Deiß, Tiemann, Julienne, and Denschlag PRL 128, 133401 (2022)

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Haze, D'Incao, Dorer, Deiß, Tiemann, Julienne, and Denschlag PRL 128, 133401 (2022)

85Rb Molecular Spectrum

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Haze, D'Incao, Dorer, Deiß, Tiemann, Julienne, and Denschlag PRL 128, 133401 (2022)

85Rb Molecular Spectrum

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Haze, D'Incao, Dorer, Deiß, Tiemann, Julienne, and Denschlag PRL 128, 133401 (2022)

85Rb Recombination (Theo) 10¹⁰ 422ж (B = 1G)432 433٥ 53210⁵ × 633 $K_3/(rac{\hbar}{m}r_{ m vdW}^4)$ o mixed (detection limit) 10^{0 ⊧} 0 10⁻⁵ 10^{0} 10^{2} 10^{3} 10^{4} 10^{1}

 $E_b/E_{\rm vdW}$

Spin-conservation Propensity Rule

Spin-conservation propensity rule for three-body recombination of ultracold Rb atoms

Haze, D'Incao, Dorer, Deiß, Tiemann, Julienne, and Denschlag PRL 128, 133401 (2022)

85Rb Recombination (Theo)

- coherent control of chemical processes

- suppression of reactions (stability of condensates)
- chemically reactive quantum phases
- ...details matter!

Few-body Physics for 7Li Atoms

(...where short- and long-range meet!?)

van der Waals Universality

 $s_{\rm res}$

van der Waals Universality

Petrov, PRL 93, 143201 (2004) Wang, D'Incao, Esry, PRA 83, 042710 (2011) Schmidt, Rath, Zwerger, EPJB 85, 386 (2012)

Feshbach Resonances for 7Li

Pollack, Dries, and Hulet, Science, 326, 1683 (2009) Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009) Gross, Shotan, Kokkelmans, and Khaykovich, PRL 105, 103203 (2010) Dyke, Pollack, and Hulet, PRA 88, 023625 (2013)

Feshbach Resonances for 7Li

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Nuclear-spin-independent short-range three-body physics in ultracold atoms, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 105, 103203 (2010)

Servaas Kokkelmans

Jinglun Li (Ulm)

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Nuclear-spin-independent short-range three-body physics in ultracold atoms, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 105, 103203 (2010)

Servaas Kokkelmans

Jinglun Li (Ulm)

Broad Resonances:

Wang, D'Incao, Esry, Greene, PRL 108, 263001 (2012)

Theory for Narrow Resonances:

Petrov, PRL 93, 143201 (2004) Wang, D'Incao, Esry, PRA 83, 042710 (2011)

What is different about 7Li?					
small Hyperfine Splitting	Species	$E_{\rm hf}/E_{\rm vdW}$			
	(⁷ Li)	1.25			
spin physics is	²³ Na	22.8			
important!	$^{39}\mathrm{K}$	21.7			
	$^{85}\mathrm{Rb}$	501.5			
	$^{87}\mathrm{Rb}$	1122.5			
	^{133}Cs	3456.2			

... small van der Waals length

[from Chin, et al., RMP 82, 1225 (2010)]

TABLE I. Characteristic van der Waals scales R_{vdW} and E_{vdW} for several atomic species (1 amu = 1/12 mass of a ¹²C atom, 1 a.u.=1 $E_h a_0^6$ where E_h is a hartree and 1 a_0 =0.052 9177... nm).

Species	Mass (amu)	C ₆ (a.u.)	$R_{ m vdW}$ (a_0)	$E_{ m vdW}/k_B$ (mK)	E _{vdW} /h (MHz)
⁶ Li	6.0151223	1393.39 ^a	31.26	29.47	614.1
²³ Na	22.9897680	1556 ^b	44.93	3.732	77.77
⁴⁰ K	39.9639987	3897 ^b	64.90	1.029	21.44
⁴⁰ Ca	39.962591	2221 ^c	56.39	1.363	28.40
⁸⁷ Rb	86.909187	4698 ^d	82.58	0.2922	6.089
⁸⁸ Sr	87.905616	3170 ^c	75.06	0.3497	7.287
¹³³ Cs	132.905429	6860 ^e	101.0	0.1279	2.666

... small van der Waals length

[from Chin, et al., RMP 82, 1225 (2010)]

TABLE I. Characteristic van der Waals scales R_{vdW} and E_{vdW} for several atomic species (1 amu = 1/12 mass of a ¹²C atom, 1 a.u.=1 $E_h a_0^6$ where E_h is a hartree and 1 a_0 =0.052 9177... nm).

Species	Mass (amu)	<i>C</i> ₆ (a.u.)	$egin{aligned} R_{ m vdW}\ (a_0) \end{aligned}$	$E_{ m vdW}/k_B$ (mK)	$E_{ m vdW}/h$ (MHz)
⁶ Li	6.0151223	1393.39 ^a	31.26	29.47	614.1
²³ Na	22.9897680	1556 ^b	44.93	3.732	77.77
⁴⁰ K	39.9639987	3897 ^b	64.90	1.029	21.44
⁴⁰ Ca	39.962591	2221 ^c	56.39	1.363	28.40
⁸⁷ Rb	86.909187	4698 ^d	82.58	0.2922	6.089
⁸⁸ Sr	87.905616	3170 ^c	75.06	0.3497	7.287
¹³³ Cs	132.905429	6860 ^e	101.0	0.1279	2.666

... small van der Waals length

[from Chin, et al., RMP 82, 1225 (2010)]

TABLE I. Characteristic van der Waals scales R_{vdW} and E_{vdW} for several atomic species (1 amu = 1/12 mass of a ¹²C atom, 1 a.u.= $1E_ha_0^6$ where E_h is a hartree and 1 a_0 =0.052 9177... nm).

... small van der Waals length

[from Chin, et al., RMP 82, 1225 (2010)]

TABLE I. Characteristic van der Waals scales R_{vdW} and E_{vdW} for several atomic species (1 amu = 1/12 mass of a ¹²C atom, 1 a.u.= $1E_ha_0^6$ where E_h is a hartree and 1 a_0 =0.052 917 7... nm).

Species	Mass (amu)	C ₆ (a.u.)	$egin{aligned} R_{ m vdW}\ (a_0) \end{aligned}$	$\frac{E_{\rm vdW}/k_{\rm H}}{({ m mK})}$
⁶ Li	6.0151223	1393.39 ^a	31.26	29.47
²³ Na	22.9897680	1556 ^b	44.93	3.732
⁴⁰ K	39.9639987	3897 ^b	64.90	1.029
⁴⁰ Ca	39.962591	2221 ^c	56.39	1.363
⁸⁷ Rb	86.909187	4698 ^d	82.58	0.2922
⁸⁸ Sr	87.905616	3170 ^c	75.06	0.3497
¹³³ Cs	132.905429	6860 ^e	101.0	0.1279

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Three-body Recombination for 7Li

Observation of universality in ultracold 7Li three-body recombination, Gross, Shotan, Kokkelmans, and Khaykovich, PRL 103, 163202 (2009)

Summary (Opportunities and Challenges)

- Still much to understand on Universality and the various multichannel and shortrange aspects of it
- **Realistic models** are necessary investigate the physics controlling universality on fewbody systems but also to understand decay rates and lifetimes

- Few-body physics can help to answer fundamental question in an unambiguous, clean, and precise way
 - **Connections to experiments** has been and will continue to be critical for the development of quantum control of reactive processes

Backup Slides

... a new laboratory for chemistry

Ultracold Atomic/Molecular Gases

Ultracold temperatures, low density, quantum state selectivity, ...

Ultracold Chemical Reactions

Room temperature chemistry is messy and difficult to coherently control!

... a new laboratory for chemistry

Ultracold Atomic/Molecular Gases

Ultracold temperatures, low density, quantum state selectivity, ...

Ultracold Chemical Reactions

Room temperature chemistry is messy and difficult to coherently control!

Experiments in State-to-State Chemistry

Prof. Johannes H. Denschlag (Ulm University, Germany)

Prof. Kang-Kuen Ni (Harvard University, USA) **Prof. Pan Jianwei** (University of Science and Technology of China, USTC)

Challenging experiments...

- high phase-space densities
- fast detection schemes
- mapping many atomic and molecular transitions
- etc...