Bosons and Fermions: from few to many

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

Opportunities and Challenges in Few-Body Physics: Unitarity and Beyond KITP, UC Santa Barbara, May 23-26 2022
NUCLEI www.computingnuclei.org

Acknowledgments:
J. Carlson (LANL), U. van Kolck (Orsay, University of Arizona), S.

Vitiello (Campinas)

Introduction

BCS.

- BEC

- T fraction of $T_{F} \rightarrow T \sim 0$
- Experimentally tunable interaction
- Crossover from weakly interacting Fermions (paired) to weakly repulsive Bosons (molecules)

Cold atoms

Example of Fermionic superfluids:

- Superconductors, $\Delta / E_{F} \sim 10^{-4}$
- Liquid ${ }^{3} \mathrm{He}, \Delta / E_{F} \sim 10^{-3}$
- High- T $_{C}$ superconductors, $\Delta / E_{F} \sim 10^{-2}$
- Cold Fermi gases, $\Delta / E_{F} \sim 0.5$
- Neutron matter, $\Delta / E_{F} \sim 0.35$

Systems very interesting to study:

- Tunable interaction (Feshbach resonances)
- Universality connecting free Fermions (BCS) to free Bosons (BEC)
- Experiments (EOS, the contact parameter, various responses, ...)
- Very similar to low-density neutron matter

The two topics in this talk:

- What about unitary Bosons? Are they universal?
- Are trapped Fermions useful for nuclear physics?

Unitary Bose gas

- Two-body attractive interaction set to the unitary limit, small effective range.

$$
V_{i j}=V_{2}^{0} \frac{\hbar^{2}}{m} \mu_{2}^{2} \exp \left[-\left(\mu_{2} r_{i j}\right)^{2} / 2\right]
$$

- Three-body repulsion needed to avoid the system collapsing. Set to have a weakly-bound trimer with a rms radius much larger than the range of the interactions.

$$
V_{i j k}=V_{3}^{0} \frac{\hbar^{2}}{m}\left(\frac{\mu_{3}}{2}\right)^{2} \exp \left[-\left(\mu_{3} R_{i j k} / 2\right)^{2} / 2\right]
$$

- The energy scale is the trimer binding energy.
- With these conditions, the system is universal, i.e. does not depend on the details of the interactions.

Quantum Monte Carlo

Evolution of Schrodinger equation in imaginary time \boldsymbol{t} :

$$
\psi(t)=e^{-\left(H-E_{T}\right) t} \psi(0)
$$

At $t \rightarrow \infty$ we get $\psi(t) \rightarrow \phi_{0}$ if not orthogonal to $\psi(0)$.
Propagation performed by

$$
\psi(R, t)=\langle R \mid \psi(t)\rangle=\int d R^{\prime} G\left(R, R^{\prime}, t\right) \psi\left(R^{\prime}, 0\right)
$$

where $G\left(R, R^{\prime}, t\right)$ is an approximate propagator known in the small-time limit:

$$
G\left(R, R^{\prime}, \Delta t\right)=\langle R| e^{-H \Delta t}\left|R^{\prime}\right\rangle \approx\langle R| e^{-p^{2} \Delta t}\left|R^{\prime}\right\rangle\langle R| e^{-V \Delta t}\left|R^{\prime}\right\rangle
$$

Then we need to iterate the above integral equation many times in the small time-step limit.

Useful to calculate many-particles. Exact for Bosons, good approximation for Fermions.

Unitary Bosons, variational wave function:

To simulate unitary Bosons, we use a variational wave function with the form:

$$
\psi_{T}(R)=\prod_{i} f^{(1)}\left(r_{i}\right) \prod_{i<j} f^{(2)}\left(r_{i j}\right) \prod_{i<j<k} f^{(3)}\left(R_{i j k}\right)
$$

where

$$
\begin{aligned}
& f^{(1)}(r)=\exp \left(-\alpha r^{2}\right) \\
& f^{(2)}(r)=\exp \left(K \tanh \left(\mu_{J} r\right) \cosh (\gamma r) / r\right) \\
& f^{(3)}(R)=\exp \left[u_{0} \exp \left(-R^{2} /\left(2 r_{0}^{2}\right)\right)\right]
\end{aligned}
$$

All the parameters are variationally optimized.

For homogeneous matter, $f^{(1)}=1$.

Bosonic clusters, from few to many

Binding energy as a function of the number of Bosons:

$X_{\mu}=\mu_{3} / \mu_{2}$, filled symbols correspond to weakly-bound trimers, open symbols to more bound trimers.
Universality provided for weakly-bound trimers!
Carlson, Gandolfi, van Kolck, Vitiello, PRL 119, 223002 (2017).

Bosonic clusters, from few to many

Radii and densities:

$$
\bar{R}_{3}=1 / \sqrt{\frac{\hbar^{2}}{-2 m E_{3}}}
$$

Unitary Bose gas, infinite system

Equation of state of the unitary Bose gas:

Saturation point well reproduced.
Universality restored for interactions corresponding to weakly-interacting trimers.

Now let's talk about Fermi systems in an external trap (two-components Fermi gas).

Fermi gas in a trap

Let's consider two-components (spin-up and spin-down) Fermions, interacting in s-wave, in a harmonic trap:

$$
H=\sum_{i=1}^{N}\left(\frac{p_{i}^{2}}{2 m}+\frac{1}{2} m \omega^{2} r_{i}^{2}\right)-v_{0} \frac{8 \hbar^{2}}{m r_{e}^{2}} \sum_{i \uparrow, j \downarrow} \frac{1}{\cosh ^{2}\left(2 r_{i j} / r_{e}\right)},
$$

Variational wave-function:

$$
\begin{aligned}
& \Psi_{T}=\prod_{i j} f_{J}\left(r_{i j^{\prime}}\right) \Phi_{\mathrm{BCS}}, \quad \Phi_{\mathrm{BCS}}=\mathcal{A}\left[\phi\left(r_{11^{\prime}}\right) \phi\left(r_{22^{\prime}}\right) \ldots \phi\left(r_{n n^{\prime}}\right)\right] \\
& \phi\left(r_{12}\right)=\sum_{k=1}^{N_{c}} c_{k} \sum_{m=-l_{k}}^{I_{k}} \frac{(-1)^{l_{k}+m}}{\sqrt{2 I_{k}+1}} \times \psi_{n_{k} l_{k} m}\left(\alpha_{k} \mathbf{r}_{1}\right) \psi_{n_{k} l_{k}-m}^{*}\left(\alpha_{k} \mathbf{r}_{2}\right)
\end{aligned}
$$

Infinite Unitary Fermi gas in a external potential

H scale invariant, functional should work for any external potential. Static response to an external potential $V=-V_{0} \sum \cos (\mathbf{q} \cdot \mathbf{r})$

Carlson, Gandolfi, PRA 90, 011601(R) (2014).
Simple density functional:
$\mathcal{E}_{g}=\int V_{\text {ext }}(r) \rho(r)+\xi \frac{3}{5}\left(3 \pi^{2}\right)^{2 / 3} \rho^{5 / 3}+c_{2} \nabla \rho^{1 / 2} \cdot \nabla \rho^{1 / 2}-c_{4} \frac{\nabla^{2} \rho^{1 / 2} \nabla^{2} \rho^{1 / 2}}{\rho^{2 / 3}}$

Inhomogeneous unitary Fermi gas

Unitary gas in a trap:

Carlson, Gandolfi, PRA 90, 011601(R) (2014).
Bands: predictions from the energy density functional. Very good agreement even for few particles.
See also Forbes, Gandolfi, Gezerlis, PRA 86, 053603 (2012).

Can two-components Fermi gas in a trap be useful for nuclear physics?

The nuclear shell model

Clear experimental evidence of magic numbers.
N or $Z=2,8,20,28,50,82,126$
Signatures (incomplete list) of properties of magic nuclei:

- Nuclei very stable (long lasting)
- Large separation energy (energy needed to extract a nucleon)
- Neutron-capture cross-sections very low (nuclei like to stay in those configurations)

hyperphysics.phy-astr.gsu.edu

Another similarity in nature: atoms!

Magic numbers

Magic numbers explain a lot of stable configurations, high separation energies, low cross-sections, quadrupole deformations, etc.
End of the story??? Of course not!
There is experimental evidence suggesting that magic numbers can disappear for some particular nucleus!

Example: ${ }^{12} \mathrm{Be}$
$Z=4, N=8\left(1 s_{1 / 2}, 1 p_{3 / 2}, 1 p_{1 / 2}\right)$
Experimentally it has been demonstrated that there is a strong $2 s_{1 / 2}$ component in the ground state and hence the breakdown of the $N=8$ shell closure.

Navin et al., PRL 85, 266 (2000).

There are many other examples where magic numbers disappear for particular Z or (large) N. Also some evidence of new magic numbers!

Fermi gas in a trap

Effect of the scattering length (with a small effective range):

$|a| \rightarrow 0$ (in the BCS side) restores shell effects
Gandolfi, Carlson, unpublished.

Fermi gas in a trap

Effect of the effective range (with scattering length $|a|=\infty$):

Large effective range (or large densities) restores shell effects.

Fermi gas in a trap

Two-particles energy separation:

Shell effects even more evident here.

Connection with nuclear physics

Neutron-neutron interactions have a "large" scattering length a $\sim 19 f m$, and a "large" effective range $r_{\text {eff }} \sim 2.8 f m$.

- Can these effects explain why nuclei with many N (neutrons) do not show shell effects (for example Calcium isotopes)?
Think about neutrons in the core, i.e. "large" density vs. neutrons on the surface, i.e. "low" density.
- Model dependence? (expected in particular for large effective range)

Stay tuned...

Conclusions

- Unitary Bose systems are universal for weakly three-body interactions.
- Bosonic clusters saturate (as liquid ${ }^{4} \mathrm{He}$). Consistency with homogeneous matter.
- Relatively simple Bosonic density functionals can be very useful to study small Fermionic systems (at least at unitarity).
- Fermi gas in a trap may provide an explanation of nuclear shell effects.
- Can we use ultra-cold Fermi gas experiments to understand nuclear physics?

Thanks!

