Boson droplets close to the unitary limit

Mario Gattobigio

Institut de Physique de Nice

KITP, 23 May 2022

Outline

Universal Window

Zero-range universality Finite-range universality

⁴He Effective Potential Description

LO Gaussian Potential - Two Body Force LO Gaussian Potential - Two+Three Body Force NLO Gaussian Potential - Two Body Force NLO Gaussian Potential - Two Body Force + LO Three Body NLO Gaussian Potential - Additional Many Body

Conclusions

Universality

Universality

(a) Low Energy $\ell \ll \ell_{de \ Broglie}$

Physics governed by the scattering length

• $a \gg \ell$ Non-perturbative regime

 \Rightarrow

$$E_2 \approx -\frac{\hbar^2}{ma^2}$$
 for $a > 0$
Efimov effect
 \Rightarrow
New three-body
parameter

Natural fine tuning

Atomic Physics - ⁴He

$$\begin{split} \ell_{vdW} &\approx 10a.u.\\ a &\approx 190 \text{ a.u.}\\ E_2 &\approx -1.30 \text{ mK} \approx \hbar^2/ma^2\\ E_3^{(0)} &\approx -126 \text{ mK} \text{ and } E_3^{(1)} \simeq -2.3 \text{ mK} \end{split}$$

Natural fine tuning

Atomic Physics - ⁴He

$$\begin{split} \ell_{vdW} &\approx 10a.u.\\ a &\approx 190 \text{ a.u.}\\ E_2 &\approx -1.30 \text{ mK} \approx \hbar^2/ma^2\\ E_3^{(0)} &\approx -126 \text{ mK} \text{ and } \frac{E_3^{(1)}}{2} \simeq -2.3 \text{ mK} \end{split}$$

M. Kunitski et al., Science 348, 551 (2015) Reinhard Doerner - University of Frankfur

Finite range

• Effective Range Expansion with one shallow two-body state

$$k \cot \delta = -\frac{1}{a} + \frac{1}{2}r_e k^2 + \sum_{\pi \equiv 2} P_{\pi} r_e^{2n-1} k^{2\pi}$$

• Simplest S-matrix

$$S(k) = \frac{k + i/a_B}{k - i/a_B} \frac{k + i/r_B}{k - i/r_B}$$

where

$$E_2 = -\frac{\hbar^2}{ma_B^2}$$
 and $r_B = a - a_B$ with $ar_e = 2a_B r_B$

• Eckart potential

$$V(r) = -2\beta\lambda^2 \frac{\mathrm{e}^{-\lambda r}}{(1+\beta\mathrm{e}^{-\lambda r})^2}$$

Finite range universality

Finite range universality

- Universality for two-particle low-energy observables
 - \blacktriangleright $r_B = a a_B =$ Constant

Asymptotic Constant

$$C_a^2 = \frac{2}{a_B} e^{2r_B/a_B}$$

Mean Square Radius

$$\langle r^2 \rangle = \frac{a_B^2}{8} e^{2r_B/a_B}$$

Probability for the particle to be outside the interaction region

$$P_e = e^{-2r_B/a_B}$$

• Effective Description using Gaussian Potential

$$V(r) = V_0 e^{-(r/r_0)^2}$$

Effective Gaussian Description of ⁴He

• *"Reference"* ⁴He given by LM2M2 potential

$$\bar{a} = 189.415 \ a_0, \bar{r}_e = 13.845 \ a_0, \text{and} \ r_B = 7.194 \ a_0$$

N	$ar{E}_N$ (mK)	$ar{E}^*_N({ m mK})$
2	-1.30348	
3	-126.40	-2.2706
4	-558.98 [Hiyama 2012]	-127.33 [Hiyama 2012]
5	-1300 [Bazak 2020]	
6	-2315 [Bazak 2020]	
7	-3571 [Bazak 2020]	

• Effective Gaussian Potential

$$V_{\rm LO}(r) = V_0 e^{-(r/r_0)^2}$$

• Small parameter

$$arepsilon=ar{r}_e/ar{a}pprox7$$
%

Two Body

• Effective Gaussian Potential

$$V_{\rm LO}(r) = V_0 e^{-(r/r_0)^2}$$

• Look for $\varepsilon = \bar{r}_e/\bar{a} \approx$ 7% description also for r_e

Few Body

- Not inside the $\varepsilon = 7\%$ band
- Collapse as $N \to \infty$

$$\frac{E_N}{N} = \frac{V_0}{2}N$$

• Need for a three-body force

Few Body

• Three-body force

$$W_{\rm L0} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

- A family of values (W_0, ρ_0) which fix \bar{E}_3
- Variation in \bar{E}_N

• We can use (W_0, ρ_0) to best fix \overline{E}_4

LO Gaussian Description

• LO Potential

$$V_0 e^{-(r/r_0)^2} + W_0 e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

• Best point is where we reproduce \bar{a} , \bar{a}_B , and $r_e!!$

LO Gaussian Description

۲	Description	within	the ε -LO	band	up to) liq	quid
---	-------------	--------	-----------------------	------	-------	-------	------

	Physical point			
	SGP	HFD-HE2		
$r_0[a_0]$	10.0485			
$V_0[\mathbf{K}]$	1.208018			
$\rho_0[a_0]$	8.4853			
$W_0[\mathbf{K}]$	3.011702			
$E_4[K]$	0.536	0.536		
$E_5[K]$	1.251	1.266		
$E_6[K]$	2.216	2.232		
$E_{10}/10[K]$	0.792(2)	0.831(2)		
$E_{20}/20[K]$	1.525(2)	1.627(2)		
$E_{40}/40[K]$	2.374(2)	2.482(2)		
$E_{70}/70[K]$	3.07(1)	3.14(1)		
$E_{112}/112[K]$	3.58(2)	3.63(2)		
$E_N/N(\infty)[\mathbf{K}]$	7.2(3)*	7.14(2)		
HFD-B [K]		7.33(2)		

NLO Gaussian Description - Two body

• NLO two-body force

$$V_{\rm NLO}(r) = V_0 e^{-(r/r_0)^2} + V_1 \frac{r^2}{r_0^2} e^{-(r/r_0)^2}$$

• We fix both \bar{a} and \bar{r}_e

NLO Two body - Few-body energies

• Without 3-body force the system is unstable

$$\frac{E_N}{N} \propto N$$

NLO Two body + LO Three body

• With the LO 3-body force

$$W_{\rm LO} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

NLO Two body + LO Three body

• With the LO 3-body force

$$W_{\rm LO} = W_0 \, e^{-(r_{12}^2 + r_{13}^2 + r_{23}^2)/\rho_0^2}$$

• Need another force at NLO!!!

Analysis with NLO 3-Body

• NLO Three-body force

$$W_{\text{NLO}} = W_0 e^{-r_{123}^2/\rho_0^2} + W_1 \left(\frac{r_{123}}{\rho_0}\right)^2 e^{-r_{123}^2/\rho_0^2}$$

Analysis with NLO 3-Body

- What happens to different three-body observables?
- Atom Dimer scattering length $\bar{a}_2 = 218 a_0$

• Different 3-Body potential strengths

Conclusion

- Potential Effective Description of states inside Unitary Window
- Expansion inspired by EFT
 - Small parameter $\varepsilon = \bar{r}_e/\bar{a}$

- Rôle of the potential range(s)
- Stability as $N \to \infty$
 - Hierarchy of forces

Collaborators

Paolo Recchia

Alejandro Kievsky

Natalia Timofeyuk

Michele Viviani

Bruno Julia Diaz

Luca Girlanda