Universal properties of two-neutron halo nuclei

Dam Thanh Son (University of Chicago) KITP Conference FewBody-C22

May 25, 2022

References

Masaru Hongo and DTS, PRL 128, 212501 (2022) [arXiv:2201.09912]

Plan

- Neutron-rich nuclei
- Two-neutron Borromean halo nuclei
- Neutrons as near-unitarity fermions: scaling dimensions of operators
- Coupling of neutron sector to the core nucleus: a renormalizable field theory

Two-neutron halo nuclei

- Near the neutron drip line, sometimes one cannot add one neutron but can add 2
(Z, A) is bound (core)
$(Z, A+1)$ is unbound
$(Z, A+2)$ is bound
- Examples: ${ }^{6} \mathrm{He},{ }^{8} \mathrm{He},{ }^{11} \mathrm{Li},{ }^{22} \mathrm{C}$

Two small energies

- Interaction between neutrons fine-tuned:

$$
a \approx-19 \mathrm{fm} \quad \epsilon_{n}=\frac{\hbar^{2}}{m_{n} a^{2}} \approx 0.12 \mathrm{MeV}
$$

- 3-body binding energy

$$
\begin{aligned}
& B\left({ }^{6} \mathrm{He}\right)=0.975 \mathrm{MeV} \\
& B\left({ }^{11} \mathrm{Li}\right)=0.369 \mathrm{MeV} \\
& B\left({ }^{22} \mathrm{C}\right) \sim 0.1 \mathrm{MeV} ?
\end{aligned}
$$

- Compare to the more typical energy scale

$$
r_{0} \approx 2.75 \mathrm{fm} \quad \frac{\hbar^{2}}{m_{n} r_{0}^{2}} \approx 5.5 \mathrm{MeV}
$$

Efimov effect?

- When the core-neutron scattering length is also large: Efimov effect, Borromean bound state inevitable
- But 3-body bound state can exist without the Efimov effect

Carbon-22

- $\left|a\left(n^{20} C\right)\right|<2.8 \mathrm{fm}$ Mosby et al 2013: non-Efimovian
- large matter radius \rightarrow small binding energy

Living near unitarity: Zeldovich's 1960 paper

THE EXISTENCE OF NEW ISOTOPES OF LIGHT NUCLEI AND THE EQUATION OF STATE OF NEUTRONS

Ya. B. ZEL'DOVICH
Submitted to JETP editor October 22, 1959
J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1123-1131 (April, 1960)

The limits of stability (relative to nucleon emission) of light nuclei are considered. The existence (in the sense of stability against decay with emission of a nucleon) of the following nuclei is predicted: $\mathrm{He}^{8}, \mathrm{Be}^{12}, \mathrm{O}^{13}, \mathrm{~B}^{15,17,19}, \mathrm{C}^{16-20}, \mathrm{~N}^{18-21}, \mathrm{Mg}^{20}$. The problem of the possibility of existence of heavy nuclei composed of neutrons only is considered. The problem is reduced to that of a Fermi gas with a resonance interaction between the particles. The energy of such a gas is proportional to $\omega^{2 / 3}$, where ω is its density. The accuracy of the calculations is not sufficient to determine the sign of the energy and answer the question as to the existence of neutron nuclei.

Neutrons: living near

 unitarity- $L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-c_{0} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$
- Introducing auxiliary field d
- $L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} d-d^{\dagger} \psi_{\downarrow} \psi_{\uparrow}+\frac{d^{\dagger} d}{c_{0}}$
- Compute full propagator of d

Renormalization

- $G_{d}^{-1}(\omega, \mathbf{p})=c_{0}^{-1}+$ one-loop integral
- $=c_{0}^{-1}+\Lambda+\left(\frac{p^{2}}{4 m}-\omega\right)^{1 / 2}$

- Unitarity: fine-tuning so that $c_{0}+\Lambda=0$
- (scattering length: $c_{0}+\Lambda=\frac{1}{a}$)
- Physically: fine-tune the attractive short-range potential to have a bound state at threshold

$$
G_{d}(\omega, \mathbf{p})=\frac{1}{\sqrt{\frac{p^{2}}{4 m}-\omega}}
$$

Power counting

- Elementary exercise in QFT: counting operator dimensions. Set $m=1$

$$
\begin{aligned}
S=\int d t d^{3} \mathbf{x} \psi^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2}\right) \psi \quad[x]=-1,[t]=-2 \\
{[\psi]=\frac{3}{2} }
\end{aligned}
$$

- Consistent with propagator:

$$
\langle\psi(t, \mathbf{x}) \psi(0, \mathbf{0})\rangle \sim \frac{e^{i x^{2} / 2 t}}{t^{3 / 2}}
$$

Dimension of dimer

operator

$$
\begin{aligned}
& G_{d}(\omega, \mathbf{p})=\frac{1}{\sqrt{\frac{p^{2}}{4 m}-\omega}} \\
& \bullet\left\langle d(t, \mathbf{x}) d^{\dagger}(0, \mathbf{0})\right\rangle \sim \frac{e^{i x^{2} / 4 t}}{t^{2}} \Rightarrow[\phi]=2
\end{aligned}
$$

- simplest example of an "unnucleus" (Braaten's talk)

Effective theory of weaklybound halo nuclei

- Add two fields to the theory
- the core ϕ
- the halo nucleus h
- Interaction: $h^{\dagger} d \phi+d^{\dagger} \phi^{\dagger} h$
- dimension: $\frac{3}{2}+\frac{3}{2}+2=5$: marginal
- leading-order EFT renormalizable

Effective Lagrangian

$$
\begin{gathered}
\mathscr{L}=h_{0}^{\dagger}\left(\mathrm{i} \partial_{t}+\frac{\nabla^{2}}{2 m_{h}}+B_{0}\right) h_{0}+\phi^{\dagger}\left(\mathrm{i} \partial_{t}+\frac{\nabla^{2}}{2 m_{\phi}}\right) \phi+g_{0}\left(h_{0}^{\dagger} \phi d+\phi^{\dagger} d^{\dagger} h_{0}\right) \\
+\psi^{\dagger}\left(\mathrm{i} \partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} d-d^{\dagger} \psi_{\downarrow} \psi_{\uparrow}+\frac{d^{\dagger} d}{c_{0}}
\end{gathered}
$$

halo $=$ bound state of core and dimer
Scale invariant theory except for:
$a_{n n}$ large but not infinite three-body binding energy $B \neq 0$

Logarithmic running of $g(g \rightarrow 0$ in the IR, Landau pole in UV)

- Halo self-energy $\Sigma(p) \sim \int d^{4} q D(p-q) G(q)$ diverges quadratically
- Quadratic divergence almost cancelled by $B_{0} h_{0}^{\dagger} h_{0}$: fine-tuning for shallow 3-body bound state
- Remaining logarithmic digergence: wave function renormalization of halo field: $h_{0}=Z^{1 / 2} h$, leads to logarithmic running of the coupling g

Charge and matter radii

- Charge radius $\left\langle r_{c}^{2}\right\rangle=\frac{4}{\pi} \frac{A^{1 / 2}}{(A+2)^{5 / 2}} \frac{g^{2}}{B} f_{c}(\beta)$,

$$
f_{c}(\beta)=\frac{1}{1-\beta^{2}}-\frac{\beta \arccos \beta}{\left(1-\beta^{2}\right)^{3 / 2}}
$$

$$
\beta=\sqrt{\frac{\epsilon_{n}}{B}}
$$

Matter radius $\left\langle r_{m}^{2}\right\rangle=\frac{2}{2 \pi} \frac{A^{3 / 2}}{(A+2)^{5 / 2}} \frac{g^{2}}{B}\left[f_{c}(\beta)+f_{n}(\beta)\right]$

$$
f_{n}(\beta)=\frac{1}{\beta^{3}}\left[\pi-2 \beta+\left(\beta^{2}-2\right) \frac{\arccos \beta}{\sqrt{1-\beta^{2}}}\right]
$$

- Universal ratio

$$
\frac{\left\langle r_{m}^{2}\right\rangle}{\left\langle r_{c}^{2}\right\rangle}=\frac{A}{2}\left[1+\frac{f_{n}(\beta)}{f_{c}(\beta)}\right]= \begin{cases}\frac{2}{3} A & B \gg \epsilon_{n} \\ A & B \ll \epsilon_{n}\end{cases}
$$

E1 dipole strength function

- $\left.\frac{d B(E 1)}{d \omega}(\omega) \sim \sum_{n}\left|\langle n|\left(\mathbf{r}_{c}-\mathbf{R}_{c m}\right)\right| 0\right\rangle\left.\right|^{2}$
- can be mapped to current-current correlation

$$
\frac{d B(E 1)}{d \omega}(\omega) \sim \frac{1}{\omega^{2}} \operatorname{lm}\langle J J\rangle(\omega)
$$

- similar to deep inelastic scatterings

Result for dipole strength

$$
\begin{align*}
& \frac{\mathrm{d} B(E 1)}{\mathrm{d} \omega}=\frac{3}{4 \pi} Z^{2} e^{2} \frac{12 g^{2}}{\pi} \frac{A^{1 / 2}}{(A+2)^{5 / 2}} \frac{(\omega-B)^{2}}{\omega^{4}} \\
& \times f_{E 1}\left(\frac{1}{-a \sqrt{\omega-B}}\right) \tag{29}
\end{align*}
$$

where

$$
\begin{equation*}
f_{E 1}(x)=1-\frac{8}{3} x\left(1+x^{2}\right)^{3 / 2}+4 x^{2}\left(1+\frac{2}{3} x^{2}\right) \tag{30}
\end{equation*}
$$

consistency check: sum rules

$$
\int_{0}^{\infty} \mathrm{d} \omega \frac{\mathrm{~d} B(E 1)}{\mathrm{d} \omega}=\frac{3}{4 \pi} Z^{2} e^{2}\left\langle r_{c}^{2}\right\rangle
$$

Corrections to EFT

- Corrections to EFT are irrelevant terms EFT
- Effective range in $n-n$ scattering: $r_{0} d^{\dagger}\left(\mathrm{i} \partial_{t}-\frac{1}{4} \nabla^{2}\right) d$
- s-wave core-neutron scattering $a_{c n} \phi^{\dagger} \psi^{\dagger} \psi \phi$
- exp upper bound on $n-{ }^{20} \mathrm{C}$ scattering length: correction is estimated to be $<25 \%$
- p-wave core-neutron resonance (i.e., ${ }^{5} \mathrm{He}$) can also be included

Conclusion

- Weakly bound two-neutron halo nuclei are next to simplest objects to described by EFT (after deuteron)
- Logarithmic running of coupling, ratio of lengths and shape of E1 dipole function are universal
- Next: nn scattering length correction (relatively easy), core-neutron scattering length or p-wave resonance (3-loop graphs)

