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THE PHYSICS

A charged particle X+/- approaching a neutral atom A, 
induces long range X-A attractive potential
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• Radiative Recombination

p̄+ e
� ! H̄ + h⌫

Laser stimulated Radiative recombination

p̄+ e
�
+ nh⌫ ! H̄ + h⌫ + (n+ 1)h⌫

• Antiproton-Positronium charge exchange

p̄+ Ps ! H̄ + e
�

He, Ne frozen: VAA  interatomic « potentials » work well
Li, Na highly polarizable, VAA fail ⇒ « 3-body » forces

We will consider the simplest case : A=H and X=π+,#+,K+…p



THE PHYSICS
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VD(x) is very weak (eV at 1A) 
If X=e- nothing interesting happens: 

as=5.6 a.u. (2.96 Å)  at=1.74 a.u (0.931 Å)

BUT

if X is heavy enough, the “effective X-A Hamiltonian”

Interaction de polarization
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• Au voisinage d’une particule chargée (X±), un atome (A) se polarise

• Interaction charge-dipôle se traduit asymptotiquement par VD ∼ −αD
r4

Potentiel attractif, longue portée, indépendant de charge

• VD est très faible mais si la particule est lourde, l’hamiltonien

HX±A ≈
1

M
+ VD

est tel que des états liés peuvent se former

• L’existence de ces états – liés ou résonants – peut modifier totalement
la diffusion X±–A à basse énergie

k
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entails a rich spectrum of bound and resonant states
It happens with X=μ,π,K,…specially if X=p
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A two-body approach with « regularized VD » gives all the physics

e.g. Mott-Massey 
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2.2 Approximation à deux corps

u”(x) + 2M
h
q2 � V (x)

i
u(x) = 0

avec la masse reduite X-H
M =

mXmH

mX +mH

=
mX

1 + mX

mH

En unites atomiques
M

me

=
mX

me

1 + mX

mH

X a.u.
e 0.511 1
µ 105.658 206.767
⇡ 139.570 273.131
K 493.677 966.100
p 938.272 1836.148
H 938.783

2.2.1 Potentiel de Mott-Massey
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where ↵(r) tends to the H dipole polarizability ↵d = 9
2 for large values of r and regularizes the 1

r4

singularity at r = 0. Its precise form has been borrowed from [?].
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2.2.2 Potentiel écranté
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There exist more clever « regularizations »

e.g. Landau-Lifshitz proposed for S=1 (!u) states (exercise § 81)

⟹

with x=2.5

2.2.7 Système p-H

Potentiel de Landau

Landau (LL V3) propose le potentiel suivant pour les etats antisymetriques

VLL(x) =
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2x4
↵d = 4.5

Il le regularisé a une constante pour x < xc = 2.5, pour eviter la divergence du terme de polarisation

V R

LL(x) =

(
VLL(x) if x � xc
VLL(xc) if x  xc

(2.2)
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• Le premier terme est repulsif

Le deuxieme terme est le potentiel de polarisation

• On utilise une variante dependant d’un parametre ⌘ devant la partie repulsive

V⌘(x) = ⌘
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• Le potentiel change de signe a R0=10.77. On a la dependence R0(⌘)

⌘ R0

1.3 11.25
1.2 11.11
1.1 10.94
1.0 10.77
0.9 10.57
0.8
0.7 10.08
0.6 9.77
0.5 9.38
0.4 8.90
0.3 8.20
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X=!+

Resonant behaviour in the elastic µH cross section (two-body)

μ-H

Rich spectrum of bound states
L=5,6,7 display very narrow resonances, visible in the total cross section (blue)

CSM calculations gives :

Des estimations avec un modèle simple

On considere X+– A comme un problème à deux corps

A supposé ponctuel et interagir avec X+ via un potentiel central

V (r) =
1

2

α(r)

r4

Pour r → ∞, α(r) → αd polarisabilité de l’atome (αd = 9
2 pour H)

Pour r → 0, α(r) régularise la singularité (Figure)

Spectre π+H (Figure)

• Grand nombre d’états liés jusqu’à L =7

• Certains très près du seuil de dissociation

Section efficace élastique µ+H (Figure)

• Etats L=5,6,7 montrent des résonances, visibles dans la section totale

Un calcul direct (CRM) de leur positions et largeurs donne:

E5 = (7.9 − 1.4 i )10−4 (a.u.)

E6 = (1.1 − 0.25 i )10−3

E7 = 1.0 × 10−3 − 1.3 i × 10−7

• Domaine de variation de l’impulsion k ∈ [0.48, 0.64]

Ces exemples illustrent très bien le type de physique gouvernée par les
forces de polarisation

Une étude détaillée en fonction de mX a montré un spectre très riche d’états
liés et résonances, dont la complexité augmente avec la masse du projectile
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X=!+

Resonant behaviour in the elastic πH cross section (two-body)

π-H

The same with !+

Larger is mX, richer is the spectrum





Is the 2-body approach reliable ?
.... certainly not !

The dipole is not static !
It is not a two body problem… but an unpredictible 3-body one
Let’s do a good job and get an unambiguous answer: the privilege of Few-
Body approach

We solved the Faddeev-Merkutriev equations for the p,e,p three-body problem 

No any “fantasy” in the Hamiltonian. 
Only inputs : 1/r and me/mp !!!

THE NUMBERS



La solution pour X-H

Obtenue en résolvant les équations de Faddeev (X+p+e−)

Fonction d’onde comme somme de trois ”amplitudes”

Ψ = Ψ1 + Ψ2 + Ψ3

chacune correspondant à une voie asymptotique différente
et s’exprimant en fonction de coordonnées de Jacobi appropriées
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Ψ1 ≡ ΨX−(pe) Ψ2 ≡ Ψp−(eX) Ψ3 ≡ Ψe−(pX)

L’équation de Schrodinger est équivalente au système couplé (Faddeev)

(E − H0 − V1)Ψ1 = V1(Ψ2 + Ψ3)
(E − H0 − V2)Ψ2 = V2(Ψ3 + Ψ1)
(E − H0 − V3)Ψ3 = V3(Ψ1 + Ψ2)

où H0 est l’hamiltonian libre (énergie cinétique) de 3 particules

On prend X+ et TX sous le seuil X++(p+e−)→p++(X+e−)

Ψ2 et Ψ3 n’ont pas d’état asymptotique

Dorénavant tout est vrai !
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In few words, solve

by assuming

which fulfill

with proper assymptotic boundary conditions

Modified by S.P. Merkuriev, to avoid long range coupling among equations
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Numbers, now totally reliable, are different than in 2-body 
… but physics is the same



Scattering lengths as a function of mX

Each peak denotes the appearance of a (L=0) X-H bound state
Interesting things start at 1.115 MeV (2.18 me)….but no particles there



Predictions for scattering lengths of physical interest

Résultats

1. Section efficace à énergie nulle (σ(0) =| a |2) (Figure)

- chaque pic correspond à l’apparition d’un état lié (B=0)

- il faut mX ≈ 2.18me pour avoir le premier

- les cas physiques (µ, π, K) ont beaucoup d’états liés

2. Longueurs de diffusion aπ+H = 24.4 et aµ+H = 69.1 (u.a.) (Figure)

3. Spectre et comparaison avec l’approche à deux corps (Figure)

- seulement accord qualitatif (fixer potentiel effectif)



The very particular case X=p

Total wf must be antisymmetric with respect to p⟷p exchange.
If Spp=0, the spatial part is symmetric (state 1s"g , molecular notation)
If Spp=1, the spatial part is antisymmetric  (state 2p "u , molecular notation)

For Spp=0 we found a0=-29.3 a.u R. Lazauskas, J. Carbonell, Few-Body Syst 31 (2002)125

For Spp=1 we found a1=750 a.u.
and the corresponding huge cross section (all that is L=0)  !!!

Author's personal copy

52 J. Carbonell et al. / C. R. Physique 12 (2011) 47–58

Fig. 5. X+–H scattering length (in atomic units) as a function of the projectile mass (in MeV). The values corresponding to physical particles are indicated
by arrows.

Fig. 6. Cross section for the L = 0 pH scattering in pp spin triplet state as a function of the energy (in atomic units). Three body results (filled squares) are
compared to those (solid line) given by the two-body Landau potential [34] modified in order to reproduce the binding energy the first excited state.

value is due to the existence of a first excited bound state with extremely small binding energy. By using the effective range
expansion, its binding energy was found to be B = (1.135 ± 0.035) × 10−9 a.u. that is ≈ 30 neV.

This state can be also viewed as the first excited vibrational level v = 1 of 2pσu symmetry in the H+
2 molecular ion.

A direct computation of this state using ad-hoc variational techniques [30] confirmed its existence and provided a more
accurate value of the binding energy B = 1.085045 × 10−9 [31]. Further work showed that it is stable with respect to the
relativistic and leading order QED corrections. Taking them into account, its binding energy is only slightly modified and
becomes B = 1.082247 × 10−9 [32].

It is worth mentioning that this H+
2 first excited antisymmetric state exists also in the so-called Landau p–H poten-

tial [34]. The latter consists in adding to the polarization term (14) a repulsive one due to the Pauli principle between
protons in the spin triplet state and reads (in atomic units)

V L(x) = η
2x

ex+1 − αd

2x4 (15)

The total potential V L is regularized to a constant below xc = 2.5. In its original formulation (η = 1) it entails an excited
S-wave state, although with binding energy two order of magnitude smaller than the exact three-body value and a p–H
scattering length consequently larger.

To our knowledge the H+
2 first vibrational 2pσu state above described constitutes the most weakly bound natural

molecule ever predicted.1 A direct computation provides a root mean squared radius R = 270 a.u. and its wavefunction
has still sizeable values well beyond 1000 a.u. That makes the state extremely unstable against any kind of perturbation.

1 It is, however, possible to prepare arbitrarily weakly bound systems suitably adjusting external magnetic fields, like for instance in [33].

A very slow proton approaching
an H atom « feels » a monster

See horizontal scale !!!



The very particular case X=p

By computing the L=0 pH phase shifts and the (modified) low energy parameters 

we showed that it corresponds to a H2+ Spp=1 bound state(*) with B=1.1 x 10-9 a.u. 

R. Lazauskas, J. Carbonell, Few-Body Syst 31 (2002)125

- Never found before !

- To our knowledge, the weakest bound ever found : smaller than 4He dimer

- It happens in the (almost) simplest system: no any parameter !

(*) It’s the 1st excited: the ground state (already known) has B=1.56 10−5 a.u.
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The very particular case X=p

Direct bound state calculation were performed one year later using variational methods
J. Carbonell, R. Lazauskas, D. Delande, L. Hilico, S.Kilic, Europhys Lett 64 (2003) 316

And totally confirming our results B=1.085045 x 10-9 a.u. 

J. Carbonell et al.: A new vibrational level of the H+
2 molecular ion 319
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Fig. 1 – Low-energy cross-section for the scattering of a proton by a hydrogen atom in its ground
state, for the pp triplet state, compared to the results using the Landau potential for the interaction.

three inter-particles distances goes to infinity. The idea is thus to expand the full 3-body
wave function on a convenient discrete basis set and to diagonalize the 3-body Hamiltonian
in this basis set. For highly accurate calculations of very weakly bound states, the basis set
must be chosen carefully. The first step is to isolate the angular dependence of the 3-body
wave function, which is straightforward for L = 0 states. One is left with a 3-dimensional
Schrödinger equation depending on the inter-particle distances only. We use the perimetric
coordinates

x = r1+ r2− r3,

y = r1− r2+ r3,

z = −r1+ r2+ r3, (6)

1 10 100 1000
-0.1

0

0.1

0.2
ψ(r)

r (Bohr radii)

Fig. 2 – Wave functions (not normalized) of the ground (dashed line) and excited (solid thick line)
levels of the 2pσu state of the H+

2 molecular ion. The last one is compared with the corresponding
p-H zero-energy scattering wave function (thin line). The existence of an excited level with very small
binding energy is predicted by our calculations. Its wave function extends very far in the internuclear
distance r, with a maximum probability density around 100 Bohr radii. It is responsible for a huge
scattering length of 750 a.u. Note the use of a logarithmic scale on r.

Ground and first excited S=1 state compared to pH scattering wf



Born-Openheimer view of H2
+

For S=0, V(!u) is quite attractive with 20 bound states (v=1,2,…20)  
Pauli PhD (Sommerfeld) : « show » H2

+ cannot exist !

For S=1, V(!g) is repulsive, but has tiny attractive pocket at r=15



There are also interesting p-H (S=1) resonances



Relativistic corrections were computed …and are small

J. Carbonell, R. Lazauskas, D. Delande, L. Hilico, S.Kilic, Europhys Lett 64(2003)316
J. Carbonell, R. Lazauskas, V.I. Korobov, J. Phys. B: At. Mol. Opt. Phys. 37(2004)2997 **
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Table 1. Convergence of the binding energy (in au) for the 2pσu(v = 1) state with respect to a
number of basis functions.

Number of state (N) Binding energy EB (in au)

2000 1.085 045 20 × 10−9

2500 1.085 045 237 × 10−9

3000 1.085 045 2464 × 10−9

3500 1.085 045 2494 × 10−9

∞ 1.085 045 252(1) × 10−9

r ≫ 100 au has a form [6]

V (R) = − αd

2R4

(
1 − 11α

2π

me

mp

1
R

)
(1)

where αd is the electric dipole polarizability of an atom (for the hydrogen atom αd = 9/2)
and α ≈ 1/137 is the fine structure constant. The first term is the classical polarization
potential, which results from the instant Coulomb interaction and is already included in the
nonrelativistic solution. The second term represents the two transverse photon exchanges
between a neutral system (hydrogen atom) and a distant charged particle (proton). In order
to evaluate the influence of this contribution on the binding energy one may use the value of
the retardation potential—second term in equation (1)—at the maximum of the bound state
wavefunction, Rmax ≈100 au, that gives

Vret(rmax) = −(9/4)(11α/2π)(me/mp) R−5
max ≈10−15 au.

Thus the change of the 2pσu(v = 1) binding energy is of the order $Eret = EB × 10−6. The
smallness of this quantity suggests that relativistic and QED corrections can be treated using
the standard perturbation technique for bound states, and eventually at some stage should take
in the Casimir–Polder effect.

2. Variational calculation of the nonrelativistic solution

The numerical calculations of the bound state wavefunction have been performed using the
variational approach described in details in [7]. The variational wavefunction for an S state
has the form,

%(r1, r2) =
∞∑

i=1

{Ui Re[e−αi r1−βi r2−γi r ] + Wi Im[e−αi r1−βi r2−γi r ]} − (1 ↔ 2), (2)

where r1 and r2 are the position vectors of the electron with respect to two protons. Complex
parameters αi , βi and γi are generated in a quasi-random manner:

αi =
[⌊ 1

2 i(i + 1)
√

pα

⌋
(A2 − A1) + A1

]
+ i

[⌊ 1
2 i(i + 1)

√
qα

⌋
(A′

2 − A′
1) + A′

1

]
,

⌊x⌋ designates the fractional part of x, pα and qα are some prime numbers, [A1, A2] and
[A′

1, A
′
2] are real variational intervals which need to be optimized. Parameters βi and γi are

obtained in a similar way.
In order to get the accurate result we use five sets of the basis functions of the type (2), for

which the variational parameters have been searched independently. The proton-to-electron
mass ratio, mp = 1836.152701me, has been adopted for these calculations.

In table 1 we present the convergence of the computed binding energies as a function
of N, the number of the basis functions. One can see that the nonrelativistic binding energy
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Table 2. The Breit–Pauli Hamiltonian corrections (in au) to the binding energy of the 2pσu(v = 1)
state.

"Enr −1.085 045 252 × 10−9

"Erc 0.003 285 2(4) × 10−9

"Etr–ph 0.000 013 371 × 10−9

"Enuc −0.000 000 067 × 10−9

"Eα2 0.003 298 5(4) × 10−9

for this weakly bound state has a relative accuracy of 10−9, which is compliant with the
requirements of the precise spectroscopy. The next question is how to improve this value by
taking into account the corrections imposed by a relativistic theory and QED. These aspects
will be discussed in the following sections. As it was demonstrated in the introduction, these
corrections can be evaluated using the standard perturbation expansion over the parameter
α ≈ 1/137, which can be derived from the nonrelativistic QED effective field theory [8].

3. Corrections due to the Breit–Pauli Hamiltonian

The Breit–Pauli Hamiltonian provides us with the relative α2 order corrections with respect to
the nonrelativistic energy of a state.

The major contribution comes from the relativistic correction for the bound electron,

δE(2)
rc = α2

〈
− p4

e

8m3
e

+
4π

8m2
e

[δ(r1) + δ(r2)]
〉
. (3)

The other term of the Breit–Pauli Hamiltonian, which has to be considered, is the transverse
photon exchange contribution, which reads

δE
(2)
tr–ph = α2

2Mp

〈
pep1

r1
+

r1(r1pe)p1

r3
1

+ (1 ↔ 2)

〉
− α2

2M2
p

〈
p1p2

R
+

R(Rp1)p2

R3

〉
. (4)

The remaining recoil corrections are negligibly small in comparison to the uncertainty in the
relativistic correction for the bound electron.

Beyond these terms, we have included as well the correction due to the finite size of the
proton,

δEnuc =
2π(Rp/a0)

2

3
⟨δ(r1) + δ(r2⟩, (5)

where Rp = 0.862(12) fm is the proton root mean square radius.
As can be seen in the table 2 the relativistic correction to the binding energy is of the order

∼ 10−3, which is in agreement with the work of Howells and Kennedy [9]. These authors
studied the relativistic corrections for the high vibrational states of the 1sσg series in H+

2. They
found that the Breit–Pauli relative contribution to the binding energy of the weakly bound
states is of the order 10−3, while in the case of low vibrational states it constitutes only a
∼ 10−5 part of the binding energy. The value of "Enr in table 2 agrees well with our previous
estimate [3], based on the simplified approach of [9].

The uncertainty in the relativistic correction for the bound electron is considerably larger
than other uncertainties in α2 corrections. This is due to the strong cancellation between the
correction terms for the H+

2 molecular ion and the ground state of the hydrogen atom. The
very accurate variational solution, providing the accuracy for the nonrelativistic energy to be
∼ 10−18 au, is still not enough to get the precise value for this relativistic contribution.
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4. Radiative and higher order relativistic corrections

The complete spin-independent contribution of order α3 and α3(m/M) has the form [8, 10]

δE(3) = α3
∑

i= 1,2

[
4
3

(
−ln α2 − β(L, v) +

5
6

− 1
5

)
⟨δ(ri )⟩

+
2

3Mp

(
−ln α − 4β(L, v) +

31
3

)
⟨δ(ri )⟩ − 14

3Mp

Q(ri)

]
, (6)

where

β(L, v) =
⟨pe(H0−E0) ln ((H0−E0)/R∞) pe⟩

4π ⟨δ(r1) + δ(r2)⟩
(7)

is the Bethe logarithm, H0 is the three-body nonrelativistic Hamiltonian, pe is the electron
momentum operator and Q(r) is the Q-term introduced by Araki and Sucher [11],

Q(r) = lim
ρ→0

〈
&(r − ρ)

4πr3
+ (ln ρ + γE)δ(r)

〉
.

In calculating the 2pσu(v = 1) state of H+
2, the Bethe logarithm was taken equal to

the hydrogenic limit, namely, β(3S, 1) ≈ 2.9841. This is justified since the electronic
wavefunction for the 2pσu(v = 1) state to a good extent can be approximated by the
antisymmetrized hydrogenic wavefunction: ψe(r1, r2;R) = (1/

√
2)(ψH(r1) − ψH(r2))). On

the other hand, this accuracy is sufficient to get a relevant estimate of the α3 order radiative
correction.

Our calculations also include the α4 order corrections in a non-recoil limit. Among them
are the one-loop self-energy and vacuum polarization corrections for the bound electron (next
to the leading term in α expansion of the external field approximation [12, 13])

δE
(4)
1-loop = α4

[
4π

(
139
128

− 1
2

ln 2
)

+
5π

48

]
⟨δ(r1) + δ(r2)⟩,

and two-loop QED corrections,

δE
(4)
2-loop = α4

π

[
−4358

1296
− 10π2

27
+

3π2

2
ln 2 − 9

4
ζ(3)

]
⟨δ(r1)+δ(r2)⟩.

The last contribution is the relativistic corrections of order α4, δE(4)
rc , for the bound electron

(the mα6 order term in the expansion of the Dirac energy for the two-centre problem).

δE(4)
rc = ⟨HBQ(E0 − H0)

−1QHB⟩ + ⟨H(4)⟩
where HB is the Breit–Pauli Hamiltonian for the bound electron of the two-centre problem
and Q is a projector orthogonal to the initial 2pσu electronic state and

H(4) = α4 p6
e

16m5
+ α4

∑

i= 1,2

(
1

8m3

[
pe,

1
ri

]
− 3π

16m4

{
p2

e ,

[
pe,

[
pe,

1
ri

]]}

+
5

128m4

[
p2

e ,

[
p2

e ,
1
ri

]])
.

In fact, the α4 relativistic correction turns out to be negligibly small and can be omitted.
The summary of the relativistic and QED contributions up to and including term of order

α4 is presented in table 3. The uncertainty in the final value is determined by the uncertainty
in calculating the leading relativistic correction for the bound electron. The other corrections
have been obtained with much better accuracy.
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All that for …almost nothing !
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Table 3. Relativistic and QED corrections to the 2pσu(v = 1) state of the hydrogen molecular
ion H+

2 .

"Enr −1.085 045 252(1) × 10−9

"Eα2 0.003 298 5(4) × 10−9

"Eα3 −0.000 470 02(1) × 10−9

"Eα4 −0.000 003 29 × 10−9

EB 1.082 219 8(4) × 10−9

5. Spin effects

In the preceding evaluations, the spin effects were ignored. For the 2pσu(v = 1) state, the
spin–spin interaction has the form:

H HFS
H+

2
= α2 8π

3
µese[µpsp1δ(r1) + µpsp2δ(r2)],

where µe = (1 +ae)/me and µp = (1 +ap)/Mp are the magnetic moments of an electron and a
proton, respectively. For the lowest hyperfine state, Stot = 1/2, the spin-dependent correction
to the binding energy is

δEHFS
H+

2
= α2 8πµeµp

3
⟨Snse⟩[⟨δ(r1) + δ(r2)⟩H+

2
],

where Sn = sp1 + sp2 is a total spin of protons, and ⟨Snse⟩ = −1. On the other hand, the p + H
asymptotic states should be antisymmetric with respect to exchange of two protons as well.
For the 2pσu(v = 1) this can be realized only when proton spins are parallel (Sn = 1). In this
case the threshold energy should be

EHFS
H (Stot = 1/2) = −α2 8πµeµp

3
[⟨δ(r)⟩H].

Then the change of the binding energy due to the spin–spin interaction is

"EHFS
Stot=1/2 =

(
δEHFS

H+
2

− EHFS
H

)
Stot=1/2 = −8.223 × 10−14 au.

6. Conclusions

The relativistic and QED corrections to the 2pσu(v = 1) vibrational state of the H+
2 molecular

ion have been evaluated. Calculations include up to α4 order terms.
The main conclusion of this work is that, despite the smallness of its binding energy,

the existence of this state is not questioned by the impact of the relativistic and radiative
effects. By including all these corrections one gets a binding energy EB = 1.082 219 8(4) ×
10−9 au, or EB = 2.944 870(1) × 10−8 eV, which represents a relative modification
"EB/EB = 2.61 × 10−3 of the nonrelativistic value.

While the nonrelativistic binding energy is now known to a relative precision of about
10−9, the final value for the physical binding energy has an uncertainty two orders of magnitude
larger. Generally, for the low vibrational ‘gerade’ states of the hydrogen isotope molecular
ions, the convergence with respect to α is better. The most conceivable explanation is that, for
the weakly bound states, the cancellation of the different correction terms in the molecular ion
and the atom has the strongest effect and this slows down the convergence of the expansion.
It is already manifest in the leading order corrections of the Breit–Pauli Hamiltonian and was
observed before in [9] for the 1sσg series of states.

Instead of B=1.085045 x 10-9 





This nice adventure inspired me some “thoughts” 
I leave them to you as a way of conclusion

I. Simple approaches are helpful to feel things, but have no any predictive power

II. Exact solutions, even for the simplest three-body problem, contain unexpected,
fascinating - and reliable - surprises … still quite unknown to AMO community 

III. The existence of this Spp=1 excited state of H2+ with B=1.09 10-9 is not only a 
curiosity of nature, but dominates the low energy scattering of p’s by H atoms
Hard to believe that such gigantic cross section would have no any consequence
- huge enhancement  in the H2

+ production cross sections

IV. Experimental observation would be more than welcome !  
- Hard in direct spattering pH (cf. Prof. R. Doerner, last week)
- The predicted state is coupled radiatively to L=1 S=0 states.

elect-dipole transition between these levels should be observable in 6GHz range 

SOME REMARKS



I’m gonna put some
spices in all that…

« Why it is bound ? »  

Of course no any need for it, but we are facing an incredible object !!! 





The problem presented is just the simplest of a long series of « simple » problems

Of particular interest are those related to the anti-hydrogen production at CERN AD

p-Positronium charge exchange (I)

3-body recombination

H+ production (II)

Astonishly, GBAR uses (I) and (II) to get after e+ ejection

In (I)
- What is the optimal     energy ?

What states are populated and with what crosss ection
- Is it interesting to use Ps* targets ?

In (II)
- What are the optimal states, both for      and Ps ?

Wait for R. Lazauskas talk

AAA
A

• Radiative Recombination

p̄ + e− → H̄ + hν

Laser stimulated Radiative recombination

p̄ + e− + nhν → H̄ + hν + (n + 1)hν

• Antiproton-Positronium charge exchange

p̄ + Ps → H̄ + e−

qui nous rend si paresseux.

AAA
A

• Radiative Recombination

p̄ + e− → H̄ + hν

Laser stimulated Radiative recombination

p̄ + e− + nhν → H̄ + hν + (n + 1)hν

• Antiproton-Positronium charge exchange

p̄ + Ps → H̄ + e−

• 3-body recombination

p̄ + e+ + e− → H̄ + e+

qui nous rend si paresseux.

AAA
A

• Radiative Recombination

p̄ + e− → H̄ + hν

Laser stimulated Radiative recombination

p̄ + e− + nhν → H̄ + hν + (n + 1)hν

• Antiproton-Positronium charge exchange

p̄ + Ps → H̄ + e−

• 3-body recombination

p̄ + e+ + e− → H̄ + e+

• Ani-H ion production
H̄ + Ps → H̄+ + e−

qui nous rend si paresseux.

AAA

2H + 3H →
4He + n

H̄

A

• Radiative Recombination

p̄ + e− → H̄ + hν

Laser stimulated Radiative recombination

p̄ + e− + nhν → H̄ + hν + (n + 1)hν

• Antiproton-Positronium charge exchange

p̄ + Ps → H̄ + e−

• 3-body recombination

p̄ + e+ + e− → H̄ + e+

• Ani-H ion production

H̄ + Ps → H̄+ + e−

qui nous rend si paresseux.

VNN = +Vπ + Vη + Vρ + Vω + Vσ0
+ Vσ1

VNN̄ = −Vπ + Vη + Vρ − Vω + Vσ0
− Vσ1

VNN → VNN̄

p̄

p̄p

p̄d

p̄3He

Critical ⌘ values, binding a dimer with B=0
p̄

1

Critical ⌘ values, binding a dimer with B=0

1 Antiprotons

p̄

H̄

1


