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Spin-Orbit Coupling (Spin-Momentum Coupling)
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• In atomic physics, we have seen the spin orbit coupling due to 
relativistic correction. The SOC term has the form of           . L · S

• In condensed matter physics, a different type of SOC (spin-
momentum coupling) also exists, e.g., the            and          terms. 

• A native picture for one type of SOC:

A charged particle moving in E-field!

E
P

P⇥ S P · S

• Effective B-field due to 
relativistic correction:

B = �p⇥ E

mc

• B-field interacts with spin:
Hso = ↵(p⇥ S) · E



Synthetic 1D SOC
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• There are many types of SOC: Rashba SOC, Dresselhaus SOC, 
mixture of Rashba and Dresselhaus SOC, Weyl SOC, …

• The SOC terms can be synthetically realized using neutral cold atoms, 
e.g., the NIST Raman laser scheme for equal mixture of Rashba and 
Dresselhaus SOC (or 1D SOC),

• Two-photon process
• Spin-flip locked to momentum kick 
• 2D isotropic SOC also realized

Spielman’s group, Nature  471, 83 (2011).

Jing Zhang’s group, Nat. Phys. 12, 540 (2016).
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3D Isotropic (Weyl) SOC---Single Particle

• Single-particle Hamiltonian: H1b =
p2

2m
+

~kso
m

p · � � = (�x,�y,�z)

• Two-branch dispersion relationship:

Positive helicity: p�+

��
pNegative helicity:

�+

|p|/~kso

Single-particle dispersion
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E+ = p2/2m+ ~ksop/m

E� = p2/2m� ~ksop/m
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3D Isotropic (Weyl) SOC---Two Particles

• Two-body NI Hamiltonian: H2b =
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(p1 · �1 + p2 · �2)

• In the COM frame: P = p1 + p2 = 0

(+,-) helicity:

(+,+) helicity:
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(-,-) helicity:
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(-,+) helicity:
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3D Isotropic (Weyl) SOC---Total Angular Momentum 
Conservation

• Two-body interacting Hamiltonian:

Hrel =
p2
rel

2µ
+

~kso
µ

prel ·
✓
�1 � �2

2

◆
+ V2b(|rrel|)

The total angular momentum 
J=L+S is conserved!

|prel|/~kso

++ +�
�+ ��|J = 0,M = 0;L = 0, S = 0i

• Focus on the J=0 channel, two possible 
angular momentum combinations:

|J = 0,M = 0;L = 1, S = 1i

• Only the “++” and “--” branches 
matter for the J=0 channel.

p+ p�

6

E
/E

s
o

See also H. Duan, L. You, and B. Gao, PRA 87, 052708 (2013).



3D Isotropic (Weyl) SOC---2Body Scattering Solution 

• For a short-range potential, the asymptotic scattering solution: 

K-matrix includes the scattering phase shift
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|J = 0,M = 0;L = 0, S = 0i

• Regular solution (E>0):

• Irregular solution (E>0):

 (r)
r!1���! J (r)�N (r)K
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|J = 0,M = 0;L = 1, S = 1i

|J = 0,M = 0;L = 1, S = 1i



3D Isotropic (Weyl) SOC---2Body Scattering Solution 
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• Regular solution (E<0):

• Irregular solution (E<0):
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• For a short-range potential, the asymptotic scattering solution: 

 (r)
r!1���! J (r)�N (r)K K-matrix includes the scattering phase shift
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3D Isotropic (Weyl) SOC---2Body Scattering Solution 

• For zero-range s-wave interaction and vanishing p-wave interaction:

K-matrix:

• Eigenvalues of K-matrix:

Effective dimension reduction: 3D DOS 1D DOS

tan �se↵ = �askso
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The other eigenvalue is zero since no p-wave phase shift is 
included! 9
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3D Isotropic (Weyl) SOC---Effects of Dimension Reduction
• Scattering cross sections:

S = (1 + iK)(1� iK)�1

�jl =
2⇡~2
p2j

|Sjl � �jl|2
S-matrix:

Cross-section:

• Enhanced binding:

E/EsoThreshold
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bound state exists for negative as

10[1] S.-J. Wang and C. Greene, PRA 91, 022706 (2016).
[2]Q. Guan and D. Blume, PRA 94, 022706 (2016).



3D Isotropic (Weyl) SOC---Short-Range Boundary 
Condition?

• I have not told you what boundary condition I used to obtain the 
analytical K matrix.

• The results are for vanishing p-wave interaction. Since SOC couples 
s- and p-wave, how to include the p-wave phase-shift?.

• Question: how do the SOC terms interplay with the short-range 
phase shift?  

• The question we asked: given the scattering length and scattering 
volume for the system without SOC, how to obtain the solution for 
the SOC system? 11



3D Isotropic (Weyl) SOC---Rotated Hamiltonian
• Two-body interacting Hamiltonian:

Hrel =
p2
rel

2µ
+

~kso
µ

prel ·
✓
�1 � �2

2

◆
+ V2b(|rrel|)

We count

Define a rotation operator
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p2
rel

2µ
+ V2b(|rrel|) + iEso
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2
,
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�
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• Rotated two-body Hamiltonian:
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r
�1
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�

R = e
�ikso(�1��2)·rrel
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O(1)No SOC Hamiltonian Neglected
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3D Isotropic (Weyl) SOC--- Effective Channel-Dependent 
Scattering Energy

• For the J=0 channel, the matrix form of the O(1) order term:

iEso


(�1 � �2) · rrel

2
,
(�1 � �2) · prel

2

�
!


�3Eso 0

0 Eso

�


p2
rel

2µ
+ V2b(|rrel|)

�
 s = (E + 3Eso) s


p2
rel

2µ
+ V2b(|rrel|)

�
 p = (E � Eso) p

• In the short-distance region, the rotated s- and p-wave channels are 
similar to the non-SOC system, but at different scattering energies:  

• Given the full energy dependence of             and             including 
the negative energy regime, we can fully solve the SOC system. 

as(E) Vp(E)

13



3D Isotropic (Weyl) SOC--- The General Framework

• Evaluate the propagation of the different partial wave channel in 
short-distance region at these channel dependent scattering energy.  

• Up to a large enough distance, i.e., the matching point, rotate the 
propagated scattering solution. 

• Match the log derivative of the rotated inner solution to that of the 
asymptotic solution.

• For a zero-range pseudopotential, we can just match the rotated 
asymptotic solution to the normal boundary condition with a 
“renormalized” scattering phase shift. 14



3D Isotropic (Weyl) SOC--- Benchmark Analytical Solution

ZR potential without shift
ZR potential with shift
LJ potential
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For large   , 
the energy 
shifts in the ZR 
model are 
crucial to 
describe the 
partial cross 
section.

Vp

15
Q. Guan and D. Blume, PRA 95, 020702(R) (2017).



3D Isotropic (Weyl) SOC--- Breaking Galilean Invariance

• All the results are for vanishing COM momentum. 

• For the SOC system, the value of the COM momentum enters the 
relative system Hamiltonian as an effective detuning, the so-called 
“breaking of Galilean invariance”.

• A fixed finite COM momentum breaks the conservation of the total 
angular momentum and couples more partial waves together. 
Richer scattering solutions are expected. Future work! 
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3D Isotropic (Weyl) SOC--- Summary

• The dispersion relationship of the SOC system is different from the 
non-SOC system.

• The helicity can be used to understand the dispersion relationship 
in our head. 

• A general framework for the SOC scattering is discussed and 
analytical solutions are obtained in the P=0 space. 

• The connection between the SOC system and the non-SOC system 
at short-distance is established.  

• The 3D SOC leads to an effective dimension reduction near the 
threshold, universal scattering cross section, enhanced binding,… 17



Three-Boson System without SOC

• The parameter space: (as, K = �
�

|E|m/�2; ��)

• Hamiltonian for 3 pairwise interacting bosons in COM frame: 

Hnosoc =
p̂2

12

2µ12
+

p̂2
12,3

2µ12,3
+ �i<jVzr(rij)r12

r12,3

• Continuous scale invarianance: given a solution of SE for
, a rescaled solution for also exists.(as, K; ��) (as/�, �K; ���)

This is just saying we can always choose a unit of a physical 
system and make the equation dimensionless. 18



Three-Boson System without SOC---Radial Scaling Law

• Discrete radial scaling law: given a 
solution of SE for                    , a rescaled 
solution for                              also exists.

(as, K; ��)
(as/�0, �0K; ��)

is not rescaled.��

• Explicitly Correlated Gaussian approach 
(ECG): two-body Gaussian potential + 
three-body Gaussian potential. Dots: 
rescaled energy for rescaled      and fixed    .    as ��

19
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Three-Boson System with 1D SOC---Hamiltonian

Hsoc =
p̂2
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Three-Boson System with 1D SOC---Radial Scaling Law

• The parameter space for the 3body system: (as, kso, �̃, �, K; ��)

• For three pseudospin-1/2 particle, there are 4 fully symmetric 
spin configuration: 3       , 2      +1      , 2      + 1      , 3      .| "i | "i | #i | #i | "i | #i

• Each 3-body curve gets spit into four curves due to the SOC terms.

1

as
� �0

as
, kso � �0kso, �̃ � �2

0�̃,

� � �2
0�, K � �0K, �� � ��

• A generalized radial scaling law:

A+D

⇤/kso ⇡ 1.5
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[2] Z.Y. Shi, H. Zhai, and X. Cui, PRA 91, 023618 (2015)
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Three-Boson System with 1D SOC---Scattering Threshold

• 3Body scattering threshold:
3 Atom threshold: Atom+Dimer threshold:

To determine 3-body threshold, the full COM 
dependence of the dimer energy is needed! 

dimer energy diagram

22
Q. Guan and D. Blume, PRA 100, 042708 (2019)



Atom+Dimer

3Atoms

Three-Boson System with 1D SOC---Scattering Threshold

• 3Body scattering threshold: • The number of 
degeneracy at the 
threshold energy goes 
from 6 to 3 to 4 to 1!

�̃/Eso• The critical              are 
around 0 and 2.3

23
Q. Guan and D. Blume, PRX 8, 021057 (2018)



Three-Boson System with 1D SOC---Binding Energy

• 3Body binding energy: • The binding energy is 
the largest near the 
highest degeneracy 
scattering threshold

• The second largest 
binding near           .�̃ = 0

The lowest one of the 4 states!

24
Q. Guan and D. Blume, PRX 8, 021057 (2018)



Three-Boson System with 1D SOC---Structural Property

The momentum space structure 
of the trimer follows that of the 
scattering threshold. More peaks 
in momentum space means 
stronger coupling effects! 25

Q. Guan and D. Blume, PRA 100, 042708 (2019)



Three-Boson System with 1D SOC--- Summary

• A discrete radial scaling law exists in an enlarged parameter space 
and verified numerically.  

• Due to broken Galilean invariance, the Hamiltonian of the relative 
d.o.f depends parametrically on the total COM momentum.  

• The strength of the binding energy is correlated to the degeneracy 
of state near the scattering threshold.  

• The structure of the trimer in momentum space is highly correlated 
to that of the threshold states.

• To determine the atom dimer scattering threshold, the full COM 
momentum dependence of the dimer energy is mapped out. 

26
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