Few-nucleon systems expanded around unitarity

Sebastian König, NC State University

Linving Near Unitarity @ KITP, Santa Barbara

June 6. 2022

SK, Hammer, Grießhammer, van Kolck, JPG **43** 055106 (2016); PRL **118** 202501 (2017) SK, JPG **44** 064007 (2017); EPJA **56** 4, 113 (2020)

Nuclear paradise

- QCD = underlying theory of strong interaction
- **EFT** = effective description in terms of hadrons
- degrees of freedom depend on resolution scale

Nuclear forest

- QCD = underlying theory of strong interaction
- **EFT** = effective description in terms of hadrons
- degrees of freedom depend on resolution scale

Nuclear clearing

- QCD = underlying theory of strong interaction
- **EFT** = effective description in terms of hadrons
- degrees of freedom depend on resolution scale

Nuclear effective field theories

- choose **degrees of freedom** approriate to energy scale
- only restricted by symmetry, ordered by power counting

Hammer, SK, van Kolck, RMP 92 025004 (2020)

- degrees of freedom here: nucleons (and clusters thereof)
- even more effective d.o.f.: rotations, vibrations

Papenbrock, NPA 852 36 (2011); ...

Outline

Prelude ✓

Introduction

Bound states and scattering

Form factors and charge radii

Something else

Nuclear complexity

Many remarkable results based on chiral E(F)T

• expand in $(Q \sim M_\pi)/M_{\rm OCD}$, derive potential (2N, 3N, ...)

Weinberg (90); Rho (91); Ordoñez + van Kolck (92); van Kolck (93); Epelbaum et al. (98); Entem + Machleidt (03); ...

However...

- still lots of detail in the interaction
- rather large number of parameters

Why so complicated?

Do we need all those details?

Can't we have something simpler?

What's in a nucleus?

Nuclear scales

Nuclear scales

Nuclear scales

Efimov trimers and tetramers

- ³H as Efimov state Efimov, PLB **33** 563 (1970); Bedaque et al.(2000)
- two associated tetramers for each Efimov state

Hammer+Platter, EPJA 32 13 (2007); von Stecher, JPB 43 101002 (2010); ...

- at unitarity
 - ► $B_4/B_3 \simeq$ 4.611, $B_{4*}/B_3 \simeq$ 1.002

Deltuva, PRA 82 040701 (2010)

- in ⁴He
 - ground state at $B_{lpha}/B_{H}\simeq 3.66$
 - resonance at $B_{\alpha*}/B_H \simeq 1.05$ (where $B_H = 7.72$)

Nuclear scales revisited

Nuclear scales revisited

New nuclear paradise

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

- take unitarity limit as leading order
 - ► infinite S-wave scattering lengths
 - ► deuteron at zero energy
- shift focus away from two-body details
- physics in universality regime

New nuclear paradise

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

Nuclear sweet spot

$$ullet$$
 $1/a$ $< Q_A < 1/R \sim m_\pi$

$$ullet \ Q_A = \sqrt{2 M_N B_A/A}$$

SK et al. PRL 118 202501 (2017)

Α	2	3	4	• • •	56
$\mathbf{Q_AR}$	0.3	0.5	8.0	• • •	0.9

van Kolck (2018)

New nuclear paradise

Capture gross features at leading order, build up the rest as perturbative "fine structure!"

Nuclear sweet spot

$$ullet$$
 $1/a$ $< Q_A < 1/R \sim m_\pi$

$$\bullet \ \ Q_A = \sqrt{2M_N B_A/A}$$

SK et al. PRL 118 202501 (2017)

Α	2	3	4	• • •	56
$\mathbf{Q_AR}$	0.3	0.5	0.8	• • •	0.9

van Kolck (2018)

- discrete scale invariance as guiding principle (Efimov effect!)
 - ▶ near equivalence to bosonic clusters, exact SU(4) symmetry

Wigner, Phys. Rev. **51** 106 (1937); Mehen et al., PRL **83** 931 (1999); Bedaque et al., NPA **676** 357 (2000) Vanasse+Phillips, FB Syst. **58** 26 (2017)

cf. also Kievsky+Gattobigio, EPJ Web Conf. 113 03001 (2016), ...

Unitarity prescription

SK et al., PRL 118 202501 (2017)

(1) describe strong force with contact interaction

$$C_0 = \underbrace{C_0^{(0)}}_{ ext{leading order (LO)}} + C_0^{(1)} + \cdots$$

- ullet momentum cutoff Λ gives "smearing"
- fit $C_0^{(0)}$ to get $a=\infty$ in both NN S-wave channels

(2) fix Efimov spectrum to physical triton energy

- pionless LO three-body force
- triton as "anchor" at each order

Bedaque et al., NPA 676 357 (2000)

(3) include in perturbation theory

- finite a, Coulomb
- range corrections
- all further higher-order corrections

Leading order has a single parameter, all the rest is a perturbation!

Implementation

Unified (2-, 3-, 4-body) numerical framework

Two-nucleon system

- ullet separable regulator for contact interactions: $V=C_0|g
 angle\langle g|$
- can be solved analytically to get scattering amplitudes

Three-nucleon system

- ullet Faddeev equations: $|\psi
 angle = G_0 t P |\psi
 angle + G_0 t |\psi_3
 angle$, $|\psi_3
 angle = \cdots$
- used to fit three-body force

Four-nucleon system

- ullet Faddeev-Yakubowsky equations: two components $|\psi_{A,B}
 angle$
- need full wavefunction for perturbation theory:

$$ullet \ket{\Psi} = (1{-}P_{34}{-}PP_{34})(1+P)\ket{\psi_A} + (1{+}P)(1{+}P)\ket{\psi_B}$$

The cutoff

- ullet increasing the momentum cutoff Λ decreases interaction range
- ullet RG invariance: fix $C=C(\Lambda)$ to keep input observables invariant

- ullet predicted observables should converge as Λ increases...
- ...but individual contributions generally do not, e.g.:

Λ/MeV	800	1000	1200	1400
$E_{ m kin}/{ m MeV}$	+113.67	+140.58	+168.44	+197.09
$E_{ m pot}/{ m MeV}$	-139.77	-167.47	-195.76	-224.62

Trinucleon energy difference

- at LO ³H and ³He are degenerate (exact isospin symmetry)
- ullet Coulomb correction enters together with $1/a_{s,pp}$ at NLO

 ΔE_3 : -

predict binding energy difference

	LO	NLO	exp.
³ H	8.48	8.48	8.48
³ He	8.48	7.6(2)	7.72
			(red = input)

- range corrections cancel at NLO
 - ► leading order is isospin symmetric
 - ullet small isospin breaking $r_{pp}
 eq r_{np}$ (5%) relegated to next higher order

SK et al. JPG 43 055106 (2017)

Unitarity expansion at second order

various contributions at next-to-next-to-leading order

SK et al., JPG **43** 055106 (2016)

- quadratic scattering-length corrections, two-photon exchange
- ullet quadratic range corrections, isospin-breaking: $r_{pp}
 eq r_{np}$
- mixed Coulomb and range corrections
- use efficient method to calculate T-matrix in pert. theory

Vanasse, PRC 88 044001 (2013)

SK, JPG 44 064007 (2017)

- good convergence of 1/a + Coulomb expansion up to N^2LO
- need isospin breaking 3NF if range corrections are included

Proton-deuteron scattering

- strength of Coulomb interaction depends on momentum scale
- perturbative effect in bound states and scattering beyond very small energies
- possible to study p-d scattering in 1S_0 unitarity expansion

SK et al., JPG 43 055106 (2016)

- Coulomb-subtracted phase shifts calculated in perturbation theory
- uncertainty bands estimated based on EFT expansion parameter
 - ► 30% leading-order band not shown

Four nucleons

- unitarity expansion converges well in three-nucleon sector ✓
- ullet further test: 4 He with $Q_4\sim 115\,$ MeV
- good standard pionless LO description established previously

Platter et al., PLB 607 254 (2005)

NLO incomplete: 1/a corr. only

	LO	NLO	exp.
³ H	8.48	8.48	8.48
⁴ He	39(12)	30(9)	28.3
		(1	red = input

Four nucleons

- unitarity expansion converges well in three-nucleon sector ✓
- further test: 4 He with $Q_4 \sim 115\,$ MeV
- good standard pionless LO description established previously

Platter et al., PLB **607** 254 (2005)

NLO incomplete: 1/a corr. only

	LO	NLO	exp.
³ H	8.48	8.48	8.48
⁴ He	39(12)	30(9)	28.3
		(1	red = input

- ⁴He resonance state 0.3 MeV above ${}^3H + p$ threshold
- just below threshold at unitarity LO
- simplified calculations give a shift of 0.2 0.5 MeV

Summary so far

Pionless EFT expansion of light nuclei around unitarity

- leading order at unitarity limit (infinite scattering length)
- everything else as perturbative fine structure

SK et al., PRL 118 202501 (2017); SK, JPG 44 064007 (2017)

E_B	LO	NLO*	N ² LO	exp.
² H	0	0	1.4(1.1)	2.22
³ H	8.48	8.48	8.48	8.48
³ He	8.48	7.6(2)	7.72	7.72
⁴ He	39(12)	30(9)		28.3

• "half unitarity" (1S_0 only) expansion for perturbative Coulomb in p-d scattering

What about observables beyond binding energies?

Charge form factors and radii

$$ullet \ F_C(q) = \langle \Psi |
ho(q) | \Psi
angle \
ightharpoons \langle r^2
angle = -rac{1}{6} rac{d^2}{dq^2} F_C$$
 , $\, q o 0$

- ullet $|\Psi
 angle=$ full few-body wavefunction, ho= e.m. current
- ullet point charge radii: subtract effects from r_p and r_n

Charge form factors and radii

$$ullet \ F_C(q) = \langle \Psi |
ho(q) | \Psi
angle \
ightharpoons \langle r^2
angle = -rac{1}{6} rac{d^2}{dq^2} F_C$$
 , $\, q o 0$

- ullet $|\Psi
 angle=$ full few-body wavefunction, ho= e.m. current
- ullet point charge radii: subtract effects from r_p and r_n

Perturbative corrections

- ullet need corrections to wavefunctions: $|\Psi
 angle=|\Psi_0
 angle+|\Psi_1
 angle+\cdots$
 - ullet corresponding to underlying EFT expansion $V=V_0+V_1+\cdots$
- can be obtained from inhomogeneous Faddeev/Faddeev-Yakubowsky equations

$$ullet \left[1 - G_0 t_0 P
ight] |\psi_1
angle = B_1 (G_0 + G_0 t_0 G_0) |\psi_0
angle + G_0 t_1 P |\psi_0
angle$$

- ▶ inclusion of three-body forces somewhat tedious but straightforward
- ▶ note: LO kernel is singular at $E = -B_0$
- ullet calculate $|\Psi_1
 angle=(1+P)|\psi_1
 angle$, enforce orthogonality to $|\Psi_0
 angle$
- ullet $F_{C,0}(q)=\langle\Psi_0|
 ho(q)|\Psi_0
 angle$, $F_{C,1}(q)=2\langle\Psi_1|
 ho(q)|\Psi_0
 angle$, \dots
- ullet analogous expansion for $\langle r^2
 angle$

SK, EPJA 56 4, 113 (2020)

Charge radii results

- triton result in excellent agreement with previous pionless calculations
 - ► range corrections are large Vanasse, PRC 95 024002 (2017); Vanasse+Phillips, FB Syst. 58 26 (2017)
- ullet universal relation satisfied well at unitarity: $M_N B_{^3H} \langle r_0^2
 angle_{^3H} = (1+s_0^2)/9 pprox 0.224$
- ⁴He result remarkably close to experimental value!

Summary and outlook

Pionless EFT expansion of light nuclei around unitarity

- leading order at unitarity limit (infinite scattering length)
- everything else as perturbative fine structure

SK et al., PRL 118 202501 (2017); SK, JPG 44 064007 (2017)

E_B	LO	NLO*	N ² LO	exp.
² H	0	0	1.4(1.1)	2.22
³ H	8.48	8.48	8.48	8.48
³ He	8.48	7.6(2)	7.72	7.72
⁴ He	39(12)	30(9)		28.3

$\sqrt{\langle r^2 angle}$	LO	NLO*	exp.	
³ H	1.04(31)	1.10(33)	1.59	
⁴ He	1.49(45)	1.73(52)	1.72	
(operates in MoV radii in fm)				

(energies in MeV, radii in fm)

- ullet "half unitarity" (1S_0 only) expansion allows perturbative Coulomb in p-d scattering
- good convergence of 3N and 4N radii in pure unitarity expansion

Summary and outlook

Pionless EFT expansion of light nuclei around unitarity

- leading order at unitarity limit (infinite scattering length)
- everything else as perturbative fine structure

SK et al., PRL 118 202501 (2017); SK, JPG 44 064007 (2017)

E_B	LO	NLO*	N ² LO	exp.
² H	0	0	1.4(1.1)	2.22
³ H	8.48	8.48	8.48	8.48
³ He	8.48	7.6(2)	7.72	7.72
⁴ He	39(12)	30(9)		28.3

$\sqrt{\langle r^2 angle}$	LO	NLO*	exp.	
³ H	1.04(31)	1.10(33)	1.59	
⁴ He	1.49(45)	1.73(52)	1.72	
(energies in MeV radii in fm)				

(energies in MeV, radii in fm)

- ullet "half unitarity" (1S_0 only) expansion allows perturbative Coulomb in p-d scattering
- good convergence of 3N and 4N radii in pure unitarity expansion
- inclusion of range correction requires a four-body force at NLO

Bazak, Kirscher, SK et al., PRL 122 143001 (2019)

- ► still leaves ⁴He radius and other oberservables as predictions
- ► full 4N NLO calculation (including range + Coulomb) still to be done

And now for something completely different...

And now for something completely different...?

Chiral EFT

- ullet expansion around **chiral limit** $(m_\pi=0)$, assumes $Q\sim m_\pi$
- pion exchange determines nuclear interaction at large and intermediate range
- further details enter as contact interactions and delta excitations

Partly perturbative pions

• consider the effective total potential:

$$V(r) = V_{
m OPE}(r) + rac{L(L+1)}{r^2}$$

ullet for L>0, this "shields" the nucleons from the singular attraction of $V_{
m OPE}(r)$

Nogga, Timmermans, van Kolck, NPA 2005

 critical momentum characterizes perturbativeness

Birse, PRC 2006

possibly complicated by contact terms

Wu+Long, PRC 2019

Bottom line

- ullet pion exchange becomes perturbative for L sufficiently large
- however, where to draw the line is not necessarily clear

Minimally non-perturbative pion scheme

A priori, we adopt the following power counting:

- Leading order (LO): $\mathcal{O}(0)$
 - OPE for ${}^{3}S_{1}$ - ${}^{3}D_{1}$, ${}^{1}S_{0}$, ${}^{3}P_{0}$
 - contact terms for each of these
 - ► only for ³P₀ this is a promotion compared to naive counting
 Wu+Long, PRC 2019
- Next-to-leading order (NLO): $\mathcal{O}(\mathbf{Q}/\mathbf{M_{hi}})$
 - ► OPE for other partial waves: ${}^{1}P_{1}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$ - ${}^{3}F_{2}$, ...
 - ► correction to ¹S₀ contact term

Long+Yang, PRC 2012

- ullet Next-to-leading order (N2LO): $\mathcal{O}(\mathbf{Q^2/M_{hi}^2})$
 - ▶ two-pion exchange (TPE)
 - ▶ three-nucleon forces
 - ▶ ...

³H binding energy

- leading order underbound by about 40%
- reduced cutoff dependence and underbinding at NLO

³H charge radius

- established RG invariance for radius calculation
- NLO surprisingly close to experiment

⁴He binding energy

- underbinding comparable to ³H result
- NLO trend also similar, but needs further investigation
- no Coulomb correction included, needs to be derived carefully

SK et al., JPG 2016

Tjon line

- established by three points (not much, but still nontrivial)
- remarkable agreement with Tjon line at unitarity

SK et al., PRL 118 202501 (2016)

Tjon line

- established by three points (not much, but still nontrivial)
- remarkable agreement with Tjon line at unitarity

SK et al., PRL 118 202501 (2016)

Thanks...

...to my collaborators...

- H.-W. Hammer (TU Darmstadt)
- H. Grießhammer (George Washington U.)
- U. van Kolck (U. Arizona and IJCLab Orsay)
- B. Long, R. Peng, S. Liu (Sichuan U.)

...for support, funding, and computing time...

• Jülich Supercomputing Center

Thanks...

...to my collaborators...

- H.-W. Hammer (TU Darmstadt)
- H. Grießhammer (George Washington U.)
- U. van Kolck (U. Arizona and IJCLab Orsay)
- B. Long, R. Peng, S. Liu (Sichuan U.)

...for support, funding, and computing time...

• Jülich Supercomputing Center

...and to you, for your attention!