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Lattice effective field theory
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Construct the effective potential order by order
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Contact interactions

Leading order (LO) Next-to-leading order (NLO)

Chiral effective field theory
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Euclidean time projection



We can write exponentials of the interaction using a Gaussian 
integral identity

We remove the interaction between nucleons and replace it 
with the interactions of each nucleon with a background field.
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Auxiliary field method
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Two-component Fermi gas at unitarity



Consider S-wave two-body scattering in three dimensions at low 

momenta.  The scattering amplitude is 
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The effective range expansion:

Consider when the scattering length a0 is infinite. At low momenta, 

we get

Unitarity limit

scale invariant physics



Two-component Fermi gases at unitarity

Consider a non-relativistic two-component Fermi gas at unitarity in the 
limit that the range of the interactions is zero and the scattering length 
tuned to infinity.

Since the unitarity limit has no intrinsic length scales, all many-body 
observables must equal some dimensionless number times the appropriate 
power of the Fermi momentum, kF.  For energies and temperatures, there 
is an overall factor of the inverse particle mass.
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For example, the energy per particle must be proportional the Fermi 
energy, EF .  This similar to the case for a free non-interacting Fermi gas.  
For the free Fermi gas, the ground state energy per particle in the 
thermodynamic limit is  

It is conventional to define the Bertsch parameter for the ratio between 
the ground state energy per particle in the unitary limit and the ground 
state energy per particle for the free gas.
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Lattice simulation results

16He, Li, Lu, D.L., PRA 101, 063615 (2020)
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He, Li, Lu, D.L., PRA 101, 063615 (2020)



He, Li, Lu, D.L., PRA 101, 063615 (2020)

Other lattice calculations: 0.372(5) Carlson, Gandolfi, Schmidt, Zhang PRA 84 061602(R) (2011) 
Experiment: 0.376(4) Ku, Sommer, Cheuk, Zwierlein, Science 335 (2012) 563
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Superfluidity pairing and condensate

Ketterle, Zwierlein
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unitarity limit



Yang, RMP 34, 694 (1962)

The two-body density matrix is defined as

Superfluidity and pairing correlations 

Long-range correlations in the two-body density matrix is a signature 
for pair superfluidity: 
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Experiment: 0.46(7) Zwierlein, Stan, Schunck, Raupach, Kerman, Ketterle, PRL 92 (2004) 120403

22

0 0.1 0.2 0.3 0.4 0.5 0.6

0.38

0.4

0.42

0.44

0.46

 [alatt
-3 ]

B1
1+

B1
1+B4/3

4/3+

Superfluid condensate fraction



23

He, Li, Lu, D.L., PRA 101, 063615 (2020)

Pair wave function



Going beyond two components

In quantum mechanics and quantum field theory, scale invariance can be 
spoiled by quantum scale anomalies.  This happens when there are bound 
states, which necessarily correspond to discrete energy levels.

Nevertheless, it may happen that a discrete subgroup of the scale symmetry 
is preserved for the dynamics of certain sectors of the Hilbert space.

This phenomenon was first noted by Efimov for bound states of three 
bosons when the two-body interactions are tuned to the unitarity limit.

Efimov, Sov. J. Nucl. Phys. 12, 589 (1971); Efimov, Phys. Rev. C47 1876 (1993)
Bedaque, Hammer, van Kolck, Phys. Rev. Lett. 82 463 (1999)
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Ferlaino, Grimm, Physics 3, 9 (2010)

Efimov trimers
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Efimov tetramers

Ferlaino, Grimm, Physics 3, 9 (2010)

Ferlaino, Koop, Berninger, Harm, D’Incao, Nägerl, Grimm, PRL 102, 140401 (2009)

Platter, Hammer, Meißner, PRA 70, 052101 (2004)
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Is nuclear physics near unitarity?
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König, Grießhammer, Hammer, van Kolck, PRL 118, 202501 (2017)
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Dawkins, Carlson, van Kolck, Gezerlis, PRL 124, 143402 (2020)
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Nonlocal short-range interactions
+ Local short-range interactions

A tale of two interactions

We consider two different interactions, A and B, at leading order (LO) in 
chiral effective field theory.  They both have the same one-pion exchange 
potential and Coulomb potential.  The difference between A and B resides 
with their short-range interactions.

Interaction A Interaction B

Nonlocal short-range interaction
Nonlocal short-range interaction

+ 
Local short-range interaction

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016)
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Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016)
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Nuclear physics near a quantum phase transition

Elhatisari, Li, Rokash, Alarcon, Du, Klein, Lu, Meißner, Epelbaum, Krebs, Lähde, D.L., Rupak, 
PRL 117, 132501 (2016)



D.L., Bogner, Brown, Elhatisari, Epelbaum, Hergert, Hjorth-Jensen, Krebs, Li, Lu, Meißner, 
PRL 127, 062501 (2021)

Kaplan, Savage, PLB 365, 244 (1996)

Kaplan, Manohar, PRC 56, 76 (1997)
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Calle Gordon, Arriola, PRC 80, 014002 (2009)

Hidden spin-isospin exchange symmetry
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D.L., Bogner, Brown, Elhatisari, Epelbaum, Hergert, Hjorth-Jensen, Krebs, Li, Lu, Meißner, 
PRL 127, 062501 (2021)



D.L., Bogner, Brown, Elhatisari, Epelbaum, Hergert, Hjorth-Jensen, Krebs, Li, Lu, Meißner, 
PRL 127, 062501 (2021)
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Essential elements for nuclear binding

What is the minimal nuclear interaction that can reproduce the ground 
state properties of light nuclei, medium-mass nuclei, and neutron 
matter simultaneously with no more than a few percent error in the 
energies and charge radii? 

We construct an interaction with only four parameters.

1. Strength of the two-nucleon S-wave interaction
2. Range of the two-nucleon S-wave interaction
3. Strength of three-nucleon contact interaction
4. Range of the local part of the two-nucleon interaction

36

Except for the Coulomb potential, the interaction is invariant under 
Wigner’s SU(4) symmetry.
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38Lu, Li, Elhatisari, D.L., Epelbaum, Meißner, PLB 797, 134863 (2019)
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Structure and spectrum of 12C

Shen, Lähde, D.L. Meißner, EPJA 57, 276 (2021)



Shen, Lähde, D.L. Meißner, arXiv:2202.13596
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Shen, Lähde, D.L. Meißner, arXiv:2202.13596
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Shen, Lähde, D.L. Meißner, arXiv:2202.13596
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Wave function matching
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Work in progress:  Elhatisari, Bovermann, et al.
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Lattice Monte Carlo simulations can compute highly nontrivial 
correlations in nuclear many-body systems.  Unfortunately, sign 
oscillations prevent direct simulations using a high-fidelity Hamiltonian 
based on chiral effective field theory due to short-range repulsion.  

Wave function matching solves this problem by means of unitary 
transformations and perturbation theory.  By using unitary 
transformations, we construct a high-fidelity Hamiltonian that can be 
reached by perturbation theory, starting from a Hamiltonian without a 
sign problem.
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Non-Perturbatively 
Computable Hamiltonians
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Non-Perturbatively 
Computable Hamiltonians

unitarily equivalent
Hamiltonians
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Non-Perturbatively 
Computable Hamiltonians

unitarily equivalent
Hamiltonians



hard repulsive core 
difficult for auxiliary-field 
Monte Carlo calculations

easy for auxiliary-field 
Monte Carlo calculations

Wave function matching
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Let us write the eigenenergies and eigenfunctions for the two interactions 
as 

We would like to compute the eigenenergies of HA starting from the 
eigenfunctions of HB and using first-order perturbation theory.
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Not surprisingly, this does not work very well.  The interactions VA and 
VB are quite different.
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Let P be a projection operator that is nonzero only for separation distances 
r less than R. We define a short-distance unitary operator U such that

There are many possible choices for U.  The corresponding action of U on 
the Hamiltonian is 

and the resulting nonlocal interaction is
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Since they are unitarily equivalent, the phase shifts are exactly the same.
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Ground state wave functions
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With wave function matching, we can now compute the eigenenergies
starting from the eigenfunctions of HB and using first-order perturbation 
theory.
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Summary

We started with an introduction to lattice
effective field theory. We then discussed
the unitarity limit and properties of two-
component Fermi gases at unitarity.

We then moved on to fermionic systems
with more than two components and asked
the question whether nuclear physics is
near the unitarity limit. We found that
symmetric nuclear matter is near a
quantum phase transition, suggesting that
the unitarity limit for nucleons likely
produces a Bose gas of alpha particles
rather than a nuclear liquid.
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However, we found numerical evidence and
large-Nc arguments that nuclear physics is
close to Wigner’s SU(4) symmetric limit
with alpha-alpha scattering near the
unitarity limit. Alpha cluster
substructures can be seen in certain nuclei.

We concluded with a discussion of a new
method called wave function matching.
Using unitary transformations, we
construct a high-fidelity Hamiltonian that
can be reached by perturbation theory
starting from a Hamiltonian that can be
computed nonperturbatively.


