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OutlineOutline

 Resonances in 2-body scattering and in electromagnetic responses of Resonances in 2-body scattering and in electromagnetic responses of 
3- and 4-particle systems3- and 4-particle systems

 Integral Transform ApproachIntegral Transform Approach
 00++-resonance in excitation spectrum of -resonance in excitation spectrum of 44He in (e,e’)He in (e,e’)
   (1/2)(1/2)++ and (5/2) and (5/2)++ resonances in excitation spectrum of  resonances in excitation spectrum of 99Be  Be  

(photodisintegration to (photodisintegration to ααααn channel)n channel)

 Halo-EFT (Halo-EFT (αα αα 00++ and  and ααn n 22PP
3/23/2

 resonances)  resonances) 
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Integral Transform ApproachIntegral Transform Approach

Aim: Calculation of Reactions Aim: Calculation of Reactions 

                                involving the involving the many-body continuummany-body continuum  

 Integral transform methods: Integral transform methods: 

                      calculation of continuum wave function can be avoided   calculation of continuum wave function can be avoided   

 Problem: The necessary inversion of the integral transform is a Problem: The necessary inversion of the integral transform is a 

                        so-called so-called ill-posed problemill-posed problem
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One is able to calculate Φ(s) but wants R(w), 
which is the quantity of direct  physical meaning. 

    
    Two examples in the literature:

  

Φ(s) = ∫ dω K(ω,s) R(ω )

KERNEL

Transform
Response
Function
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Exponential Kernel:   K(ω,s) = e - ω s     s real

 used in condensed matter physics, nuclear physics, lattice 
QCD,...  

 Φ ( s ) calculated by GFMC  

ω
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Exponential Kernel:   K(ω,s) = e - ω s     s real

 used in condensed matter physics, nuclear physics, lattice 
QCD,...  

 Φ ( s ) calculated by GFMC  

Lorentzian Kernel: K(ω,s) = [(ω – s) (ω – s)*]-1      
 complex s = s

R
 + is

I

 used in nuclear physics

 Φ ( s ) calculated via matrix 
 diagonalization on localized basis functions

  

s
I

s
R

ω
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Lorentz integral transform L(s
R
,s

I
) for response function     

               R(w) = ∫ df  |<f|O|0>|2 d(w-E
f
+E

0
)

                  L(s
R
,s

I
) = <Y|Y>

                (H – E
0
 – s

R
 + is

I
) |Y>  = O |0>

Solution is unique and has bound-state like asymptotic 
behaviour, one can apply bound-state methods for 
solution 
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ILL-POSEDILL-POSED

What does it mean?What does it mean?

Let us check an exampleLet us check an example
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Example: black and red responsesExample: black and red responses

D

 D = 4.2
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Let us check corresponding LITs with various width 

parameters Γ= 2s
I
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                                                Conclusion:Conclusion:

        LIT method is a method with a LIT method is a method with a controlled resolutioncontrolled resolution

              Consequence:Consequence: discard inversions with structures                  discard inversions with structures                 
               having a width smaller than                having a width smaller than ss

I
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Inversion of the LITInversion of the LIT

 LIT is calculated for a fixed σ
I
 in many σ

R
 points

Express the searched response function formally on a basis set with  M basis basis 
functions f

m
(E) and open coefficients c

m 
 with correct  threshold behaviour for the 

f
m

(E)  (e.g., f
m

 = f
thr

 (E) exp(-αE/m) ). If specific structures, like narrow resonances, are 

present allow for basis functions f
m

(E) with such a structure, e.g. Lorentzians with 

variable position and width

 Make a LIT  of the basis functions and determine  coefficents c
m 

by a fit to the           

    calculated LIT

 Increase M up to the point that a sufficient convergence is obtained
    (structures with too small widths or uncontrolled oscillations should not be                
    present)
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0+ Resonance in the 4He compound system

Resonance at ER = -8.2 MeV, i.e. above the 3H-p threshold. Strong 

evidence in electron scattering off 4He,  = 270±50 keV

G. Köbschall et al./ Quasi bound state in 4He - Nucl. Phys. A405, 648 (1983)   

Excitation energy [MeV]
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p-triton scattering lengthp-triton scattering length

Experimental data rather old (fit J. Carbonell)Experimental data rather old (fit J. Carbonell)

(a(a
00
 + a + a

11
)/2 )/2 ~~ -17 fm  with  -17 fm  with aa

1 1 
~~ 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

⇒ ⇒ aa
0 0 
~ -40 ~ -40 fm (towards unitarityfm (towards unitarity ?) ?)

  

                                                        

(also interesting: Viviani et al., arXiv:2003.14059)
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p-triton scattering lengthp-triton scattering length

Experimental data rather old (fit J. Carbonell)Experimental data rather old (fit J. Carbonell)

(a(a
00
 + a + a

11
)/2 )/2 ~~ -17 fm  with  -17 fm  with aa

1 1 
~~ 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

⇒ ⇒ aa
0 0 
~ -40 ~ -40 fm (towards unitarityfm (towards unitarity ?) ?)

Theoretical calculations of transition form factor:Theoretical calculations of transition form factor:
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p-triton scattering lengthp-triton scattering length

Experimental data rather old (fit J. Carbonell)Experimental data rather old (fit J. Carbonell)

(a(a
00
 + a + a

11
)/2 )/2 ~~ -17 fm  with  -17 fm  with aa

1 1 
~~ 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

⇒ ⇒ aa
0 0 
~ -40 ~ -40 fm (towards unitarityfm (towards unitarity ?) ?)

Theoretical calculations of transition form factor:Theoretical calculations of transition form factor:

 Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data 
with potential model AV8’ (NN) + hypercentral 3NFwith potential model AV8’ (NN) + hypercentral 3NF
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p-triton scattering lengthp-triton scattering length

Experimental data rather old (fit J. Carbonell)Experimental data rather old (fit J. Carbonell)

(a(a
00
 + a + a

11
)/2 )/2 ~~ -17 fm  with  -17 fm  with aa

1 1 
~~ 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

⇒ ⇒ aa
0 0 
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Theoretical calculations of transition form factor:Theoretical calculations of transition form factor:

 Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data 
with potential model AV8’ (NN) + hypercentral 3NFwith potential model AV8’ (NN) + hypercentral 3NF

 Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two 
realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) 
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p-triton scattering lengthp-triton scattering length

Experimental data rather old (fit J. Carbonell)Experimental data rather old (fit J. Carbonell)

(a(a
00
 + a + a

11
)/2 )/2 ~~ -17 fm  with  -17 fm  with aa

1 1 
~~ 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

⇒ ⇒ aa
0 0 
~ -40 ~ -40 fm (towards unitarityfm (towards unitarity ?) ?)

Theoretical calculations of transition form factor:Theoretical calculations of transition form factor:

 Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data 
with potential model AV8’ (NN) + hypercentral 3NFwith potential model AV8’ (NN) + hypercentral 3NF

 Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two 
realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) 

 New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)
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p-triton scattering lengthp-triton scattering length

Experimental data rather old (fit J. Carbonell)Experimental data rather old (fit J. Carbonell)

(a(a
00
 + a + a

11
)/2 )/2 ~~ -17 fm  with  -17 fm  with aa

1 1 
~~ 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))
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0 0 
~ -40 ~ -40 fm (towards unitarityfm (towards unitarity ?) ?)

Theoretical calculations of transition form factor:Theoretical calculations of transition form factor:

 Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data 
with potential model AV8’ (NN) + hypercentral 3NFwith potential model AV8’ (NN) + hypercentral 3NF

 Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two 
realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) 

 New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)

 Interesting new feature: low-q expansion of transition form factor FInteresting new feature: low-q expansion of transition form factor F0+0+(q(q22))
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 New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582) New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582) 

 Z|FZ|F0+0+(q(q22)|/q)|/q22 =  = <r<r22>>
tr tr 
//6 6 ((1 − q1 − q22  RR22

trtr
//2020 + O(q + O(q44)))                            )                            
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Experimental data rather old (fit J. Carbonell)Experimental data rather old (fit J. Carbonell)

(a(a
00
 + a + a

11
)/2 )/2 ~~ -17 fm  with  -17 fm  with aa

1 1 
~~ 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) 5.5 fm (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

⇒ ⇒ aa
0 0 
~ -40 ~ -40 fm (towards unitarityfm (towards unitarity ?) ?)

Theoretical calculations of transition form factor:Theoretical calculations of transition form factor:

 Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data 
with potential model AV8’ (NN) + hypercentral 3NFwith potential model AV8’ (NN) + hypercentral 3NF

 Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two 
realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF) 

 New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582) New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582) 

 Z|FZ|F0+0+(q(q22)|/q)|/q22 =  = <r<r22>>
tr tr 
//6 6 ((1 − q1 − q22  RR22

trtr
//2020 + O(q + O(q44)))            )            <r<r22>>

trtr
              RR22

trtr
            

        Experiment                             1.53 ± 0.05   4.56 ± 0.15

Theory (AV8’+ hypcntrl 3NF)  1.36 ± 0.01   4.01 ± 0.05

Theory (AV18+UIX)                1.54 ± 0.01   3.77 ± 0.08

Theory (χEFT)                         1.83 ± 0.01   3.97 ± 0.05
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Additional observation concerning resonance width G :
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Additional observation concerning resonance width G :

Previous calculations were unable to determine a width 
Hiyama et al.: bound-state calculation
Bacca et al.: Hypersperical harmonic expansion of LIT states states with a scarse density of 
LIT states in resonance  region (resonance described by a single LIT state)
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Additional observation concerning resonance width G :

Previous calculations were unable to determine a width 
Hiyama et al.: bound-state calculation
Bacca et al.: Hypersperical harmonic expansion of LIT states states with a scarse density of 
LIT states in resonance  region (resonance described by a single LIT state)

LIT state density can be increased choosing a different basis: 3-body HH + additional 
expansion of |Y> for last Jacobi coordinate as shown in calculation with MT NN potential 
(central)  (WL, PRC 91, 054001 (2015))
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Inversion: G = 180(70) keV

New Mainz exp.: 288(39) keV

Additional observation concerning resonance width G :

Previous calculations were unable to determine a width 
Hiyama et al.: bound-state calculation
Bacca et al.: Hypersperical harmonic expansion of LIT states states with a scarse density of 
LIT states in resonance  region (resonance described by a single LIT state)

LIT state density can be increased choosing a different basis: 3-body HH + additional 
expansion of |Y> for last Jacobi coordinate as shown in calculation with MT NN potential 
(central)  (WL, PRC 91, 054001 (2015))



                              W. Leidemann, KITP Program “Living Near Unitarity”, May – June 2022

Halo or Cluster EFTHalo or Cluster EFT

9Be as  ααn system 

Interactions needed:
     LO: s-wave for  αα  (8Be resonance)
            a

0
 = -1920 fm

            p-wave resonance 2P
3/2

 for αn (5He resonance) 

           a
1
 = -62.951 fm3  

          
           3BF ααn (hypercentral)

   NLO: s-wave for αn

 Our Aim:    9Be  + γ            α + α + n
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      Two-Body InteractionsTwo-Body Interactions

Potentials in momentum space

V(p,p’) = Σ
l
 V
l
(p,p’) (2l+1) P

l
cos(Θ

pp’
) 

V
l
(p,p’) = g(p) g(p') p

l
 p’
l
 [ λ

0
 +λ

1 
(p2 + p'2)]

where p and p' are the relative momenta of the 2-body system

and g(p) is a cutoff: g(p) = exp(-p4/Λ4)

Make similar expansion for t-matrix

t
l
(p,p’) = g(p) g(p') p

l
 p’
l
 [ τ

0
 +τ

1 
(p2 + p'2)]

Potentials in momentum space

V(p,p’) = Σ
l
 V
l
(p,p’) (2l+1) P

l
cos(Θ

pp’
) 

V
l
(p,p’) = g(p) g(p') p

l
 p’
l
 [ λ

0
 +λ

1 
(p2 + p'2)]

where p and p' are the relative momenta of the 2-body system

and g(p) is a cutoff: g(p) = exp(-p4/Λ4)

Make similar expansion for t-matrix
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Solve resulting Lippmann-Schwinger equation analyticallySolve resulting Lippmann-Schwinger equation analytically

(because of Coulomb αα more complicated: T = T
C
 + T

SC
 

where T
C
 is the T-matrix connected to the pure Coulomb interaction, 

while T
SC

 is the one associated to the Coulomb-distorted short-range interaction)
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Solve resulting Lippmann-Schwinger equation analyticallySolve resulting Lippmann-Schwinger equation analytically

(because of Coulomb αα more complicated: T = T
C
 + T

SC
 

where T
C
 is the T-matrix connected to the pure Coulomb interaction, 

while T
SC

 is the one associated to the Coulomb-distorted short-range interaction)

Compare on-shell T-matrix to effective range expansion (here given without Coulomb)

k2l/T
on

(E) = -μ/2π (-1/a
l
+ r2

l,e 
k2  - ik      + … ),     E=k2/2μ,

⇒ Quadratic eqs. with two solutions for LECs  λ
0
 and λ

1 
for any value of Λ

2l+1
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while T
SC

 is the one associated to the Coulomb-distorted short-range interaction)

Compare on-shell T-matrix to effective range expansion (here given without Coulomb)
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Cutoff dependence ofCutoff dependence of  9  9Be ground-state energyBe ground-state energy
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Cutoff dependence ofCutoff dependence of  9  9Be ground-state energyBe ground-state energy
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Cutoff dependence ofCutoff dependence of  9  9Be ground-state energyBe ground-state energy
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99Be photodisintegrationBe photodisintegration

Only E1 transitions are considered, since 9Be has Jπ= (3/2)
-

one has (1/2)+, (3/2)+ and (5/2)+ final states
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99Be photodisintegrationBe photodisintegration

Only E1 transitions are considered, since 9Be has Jπ= (3/2)
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one has (1/2)+, (3/2)+ and (5/2)+ final states
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99Be photodisintegrationBe photodisintegration

Only E1 transitions are considered, since 9Be has Jπ= (3/2)
-

one has (1/2)+, (3/2)+ and (5/2)+ final states

Current operator (LO) in limit of vanishing photon momentum proportional to

                                e (p
α1,⊥

 + p
α2,⊥

)
 
/ m

α 

Leads to following LIT results
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Resulting Resulting 99Be photoabsorption cross sectionBe photoabsorption cross section
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Conclusion concerning Conclusion concerning 99Be photoabsorptionBe photoabsorption

 
Fine-tuning of 3-body cutoff such that (1/2)+ resonance position agrees with 
experiment data leads to 

  correct (1/2)+ resonance strength

  correct position of (5/2)+ resonance

  correct (5/2)+ resonance strength 
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