Resonances in Few-Particle Systems

Winfried Leidemann

Department of Physics University of Trento

Outline

- Resonances in 2-body scattering and in electromagnetic responses of 3- and 4-particle systems
- Integral Transform Approach
- O⁺-resonance in excitation spectrum of ⁴He in (e,e')
- (1/2)⁺ and (5/2)⁺ resonances in excitation spectrum of ⁹Be (photodisintegration to ααn channel)
- = Halo-EFT ($\alpha \alpha$ 0⁺ and αn ²P_{3/2} resonances)

Integral Transform Approach

Aim: Calculation of Reactions involving the many-body continuum

Integral transform methods: calculation of continuum wave function can be avoided

Problem: The necessary inversion of the integral transform is a so-called ill-posed problem

One is able to calculate $\Phi(\sigma)$ but wants $R(\omega)$, which is the quantity of direct physical meaning.

Two examples in the literature:

Exponential Kernel: $K(\omega,\sigma) = e^{-\omega\sigma} \sigma$ real

used in condensed matter physics, nuclear physics, lattice QCD,...

• Φ (σ) calculated by GFMC

used in condensed matter physics, nuclear physics, lattice QCD,...

 σ real

ω

 σ_{R}

Exponential Kernel: $K(\omega,\sigma) = e^{-\omega \sigma}$

• Φ (σ) calculated by GFMC

Lorentzian Kernel: $K(\omega,\sigma) = [(\omega - \sigma) (\omega - \sigma)^*]^{-1}$ complex $\sigma = \sigma_R + i\sigma_I$

used in nuclear physics

Φ (σ) calculated via matrix diagonalization on localized basis functions Lorentz integral transform $L(\sigma_{p},\sigma_{l})$ for response function

 $\mathsf{R}(\omega) = \int \mathrm{d} f |\langle \mathsf{f} | \mathsf{O} | \mathsf{O} \rangle|^2 \, \delta(\omega - \mathsf{E}_{\mathsf{f}} + \mathsf{E}_{\mathsf{O}})$

 $L(\sigma_R,\sigma_I) = \langle \Psi | \Psi \rangle$

 $(H - E_0 - \sigma_R + i\sigma_I) |\Psi\rangle = O |0\rangle$

Solution is unique and has bound-state like asymptotic behaviour, one can apply bound-state methods for solution

What does it mean?

Let us check an example

Example: black and red responses

Let us check corresponding LITs with various width parameters $\Gamma = 2\sigma_{I}$

Conclusion:

LIT method is a method with a controlled resolution

Consequence: discard inversions with structures having a width smaller than $\sigma_{\!_{I}}$

Inversion of the LIT

LIT is calculated for a fixed σ_1 in many σ_R points Express the searched response function formally on a basis set with *M* basis basis functions $f_m(E)$ and open coefficients c_m with correct threshold behaviour for the $f_m(E)$ (e.g., $f_m = f_{thr}(E) \exp(-\alpha E/m)$). If specific structures, like narrow resonances, are present allow for basis functions $f_m(E)$ with such a structure, e.g. Lorentzians with variable position and width

Make a LIT of the basis functions and determine coefficients c_m by a fit to the calculated LIT

Increase M up to the point that a sufficient convergence is obtained (structures with too small widths or uncontrolled oscillations should not be present)

0⁺ Resonance in the ⁴He compound system

Resonance at $E_R = -8.2$ MeV, i.e. above the ³H-p threshold. Strong evidence in electron scattering off ⁴He, $\Gamma = 270\pm50$ keV

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm}$ with $a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010)) $\Rightarrow a_0 \sim -40 \text{ fm}$ (towards unitarity ?) (also interesting: Viviani et al., arXiv:2003.14059)

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm}$ with $a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm with } a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

Theoretical calculations of transition form factor:

 Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm with } a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

- Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF
- Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF)

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm}$ with $a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

- Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF
- Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF)
- New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm with } a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

Theoretical calculations of transition form factor:

- Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF
- Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF)
- New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm}$ with $a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

- Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF
- Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF)
- New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)
- Interesting new feature: low-q expansion of transition form factor $F^{0+}(q^2)$

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm}$ with $a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

- Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF
- Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF)
- New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)
- $Z|F^{0+}(q^2)|/q^2 = \langle r^2 \rangle_{tr} / 6 \left(1 q^2 \frac{R^2}{t} / 20 + O(q^4) \right)$

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm with } a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

- Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF
- Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF)
- New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)
- $Z|F^{0+}(q^2)|/q^2 = \langle r^2 \rangle_{tr} / 6 \left(1 q^2 \frac{R^2}{t} / 20 + O(q^4) \right)$

Experimental data rather old (fit J. Carbonell)

 $(a_0 + a_1)/2 \sim -17 \text{ fm with } a_1 \sim 5.5 \text{ fm}$ (Lazauskas, EPJ Web of Conf. 3, 04006 (2010))

 \Rightarrow a₀ ~ -40 fm (towards unitarity ?)

Theoretical calculations of transition form factor:

- Hiyama et al., 2004 (resonance treated as bound state): nice agreement with exp. data with potential model AV8' (NN) + hypercentral 3NF
- Bacca et al. 2013 (LIT calculation): rather large disagreement with exp. data with two realistic nuclear forces (AV18+UIX, chiral force: N3LO (NN)+N2LO (3NF)
- New Mainz measurement of transition form factor (S. Kegel et al., arXiv:2112.10582)

Previous calculations were unable to determine a width Hiyama et al.: bound-state calculation Bacca et al.: Hypersperical harmonic expansion of LIT states states with a scarse density of LIT states in resonance region (resonance described by a single LIT state)

Previous calculations were unable to determine a width Hiyama et al.: bound-state calculation Bacca et al.: Hypersperical harmonic expansion of LIT states states with a scarse density of LIT states in resonance region (resonance described by a single LIT state)

LIT state density can be increased choosing a different basis: 3-body HH + additional expansion of $|\Psi\rangle$ for last Jacobi coordinate as shown in calculation with MT NN potential (central) (WL, PRC 91, 054001 (2015))

Previous calculations were unable to determine a width Hiyama et al.: bound-state calculation Bacca et al.: Hypersperical harmonic expansion of LIT states states with a scarse density of LIT states in resonance region (resonance described by a single LIT state)

LIT state density can be increased choosing a different basis: 3-body HH + additional expansion of $|\Psi\rangle$ for last Jacobi coordinate as shown in calculation with MT NN potential (central) (WL, PRC 91, 054001 (2015))

Inversion: $\Gamma = 180(70)$ keV

New Mainz exp.: 288(39) keV

Halo or Cluster EFT

```
<sup>9</sup>Be as \alpha\alphan system
```

Interactions needed: LO: s-wave for $\alpha \alpha$ (⁸Be resonance) $a_0 = -1920 \text{ fm}$ p-wave resonance $2P_{3/2}$ for αn (⁵He resonance) $a_1 = -62.951 \text{ fm}^3$

3BF $\alpha \alpha n$ (hypercentral)

NLO: s-wave for αn

Our Aim: ⁹Be + $\gamma \longrightarrow \alpha + \alpha + n$

Potentials in momentum space

$$\nabla(\mathbf{p},\mathbf{p}') = \sum_{\ell} \nabla_{\ell}(\mathbf{p},\mathbf{p}') (2\ell+1) \operatorname{P}_{\ell} \cos(\Theta_{\mathbf{pp}'})$$
$$\nabla_{\ell}(\mathbf{p},\mathbf{p}') = g(\mathbf{p}) g(\mathbf{p}') \operatorname{p}^{\ell} \operatorname{p}^{\prime \ell} \left[\lambda_{0} + \lambda_{1} (\mathbf{p}^{2} + \mathbf{p}'^{2}) \right]$$

where **p** and **p'** are the relative momenta of the 2-body system and g(p) is a cutoff: g(p) = $\exp(-p^4/\Lambda^4)$

Make similar expansion for t-matrix

 $\mathbf{t}_{\ell}(p,p') = g(p) g(p') p^{\ell} p^{\ell} [\tau_0 + \tau_1 (p^2 + p'^2)]$

(because of Coulomb $\alpha \alpha$ more complicated: $T = T_c + T_{sc}$ where T_c is the T-matrix connected to the pure Coulomb interaction, while T_{sc} is the one associated to the Coulomb-distorted short-range interaction)

(because of Coulomb $\alpha \alpha$ more complicated: $T = T_c + T_{sc}$ where T_c is the T-matrix connected to the pure Coulomb interaction, while T_{sc} is the one associated to the Coulomb-distorted short-range interaction)

Compare on-shell T-matrix to effective range expansion (here given without Coulomb)

$$k^{2\ell}/T_{on}(E) = -\mu/2\pi$$
 (-1/a_l + r²_l k² - ik^{2l+1} + ...), $E = k^{2}/2\mu$,

 \Rightarrow Quadratic eqs. with two solutions for LECs λ_0 and λ_1 for any value of Λ

(because of Coulomb $\alpha \alpha$ more complicated: $T = T_c + T_{sc}$ where T_c is the T-matrix connected to the pure Coulomb interaction, while T_{sc} is the one associated to the Coulomb-distorted short-range interaction)

Compare on-shell T-matrix to effective range expansion (here given without Coulomb)

$$k^{2\ell}/T_{on}(E) = -\mu/2\pi$$
 (-1/a_l + r²_{l.e} k² - ik^{2l+1} + ...), $E = k^{2}/2\mu$,

 \Rightarrow Quadratic eqs. with two solutions for LECs λ_0 and λ_1 for any value of Λ

(because of Coulomb $\alpha \alpha$ more complicated: $T = T_c + T_{sc}$ where T_c is the T-matrix connected to the pure Coulomb interaction, while T_{sc} is the one associated to the Coulomb-distorted short-range interaction)

Compare on-shell T-matrix to effective range expansion (here given without Coulomb)

$$k^{2\ell}/T_{on}(E) = -\mu/2\pi$$
 (-1/a_l + r²_{l.e} k² - ik^{2\ell+1} + ...), $E = k^{2}/2\mu$,

 \Rightarrow Quadratic eqs. with two solutions for LECs λ_0 and λ_1 for any value of Λ

(because of Coulomb $\alpha \alpha$ more complicated: $T = T_c + T_{sc}$ where T_c is the T-matrix connected to the pure Coulomb interaction, while T_{sc} is the one associated to the Coulomb-distorted short-range interaction)

Compare on-shell T-matrix to effective range expansion (here given without Coulomb)

 $k^{2\ell}/T_{on}(E) = -\mu/2\pi$ (-1/a_l + r²_{l,e} k² - ik^{2l+1} + ...), $E = k^{2}/2\mu$,

 \Rightarrow Quadratic eqs. with two solutions for LECs λ_0 and λ_1 for any value of Λ

Cutoff dependence of ⁹Be ground-state energy

Wave function is calculated via expansion in hyperspherical harmonics (HH) in momentum space

Cutoff dependence of ⁹Be ground-state energy

Include 3-body force: $V_3 = \lambda_3 \exp[-(p_{12} + p_{23} + p_{31})/\Lambda_3^2] \exp[-(p_{12}^2 + p_{23}^2 + p_{31}^2)/\Lambda_3^2]$

Cutoff dependence of ⁹Be ground-state energy

Include 3-body force: $V_3 = \lambda_3 \exp[-(p_{12} + p_{23} + p_{31})/\Lambda_3^2] \exp[-(p_{12}^2 + p_{23}^2 + p_{31}^2)/\Lambda_3^2]$

HH convergence in function of grand-angular quantum number K

⁹Be photodisintegration

Only E1 transitions are considered, since ⁹Be has $J^{\pi} = (3/2)^{-1}$ one has $(1/2)^{+}$, $(3/2)^{+}$ and $(5/2)^{+}$ final states

⁹Be photodisintegration

Only E1 transitions are considered, since ⁹Be has $J^{\pi} = (3/2)^{-1}$ one has $(1/2)^{+}$, $(3/2)^{+}$ and $(5/2)^{+}$ final states

Current operator (LO) in limit of vanishing photon momentum proportional to

e (
$$\mathbf{p}_{\alpha_1,\perp} + \mathbf{p}_{\alpha_2,\perp}$$
) / \mathbf{m}_{α}

⁹Be photodisintegration

Only E1 transitions are considered, since ⁹Be has $J^{\pi} = (3/2)^{-1}$ one has $(1/2)^{+}$, $(3/2)^{+}$ and $(5/2)^{+}$ final states

Current operator (LO) in limit of vanishing photon momentum proportional to

e (
$$\mathbf{p}_{\alpha_1,\perp} + \mathbf{p}_{\alpha_2,\perp}$$
) / \mathbf{m}_{α}

Leads to following LIT results

Increase resolution to $\sigma_1 = 0.2$ MeV for $\Lambda_3 = 300$ MeV

Increase resolution to $\sigma_1 = 0.2$ MeV for $\Lambda_3 = 300$ MeV

W. Leidemann, KITP Program "Living Near Unitarity", May – June 2022

Inversions for dominant multipoles $(1/2)^{+}$ and $(5/2)^{+}$

Inversions for dominant multipoles $(1/2)^{+}$ and $(5/2)^{+}$

Resulting ⁹Be photoabsorption cross section

Conclusion concerning ⁹Be photoabsorption

Fine-tuning of 3-body cutoff such that $(1/2)^+$ resonance position agrees with experiment data leads to

- \star correct (1/2)⁺ resonance strength
- \star correct position of $(5/2)^+$ resonance
- \star correct (5/2)⁺ resonance strength

Thanks to collaborators

⁴He-transition form factor: Sonia Bacca, Nir Barnea, G. Orlandini

Cluster EFT: Elena Filandri, Chen Ji, G. Orlandini