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Two-component systems

• Identical particles in two different states
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① Efimov trimers of bosons
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2 identical bosons + 1 particle
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2 identical bosons + 1 particle
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② Polaron physics

Two impurities in a Bose-Einstein condensate: from Yukawa to Efimov attracted polarons
J. Phys. Soc. Jpn. 87, 043002 (2018)
[arxiv:1607.04507]

Tetramers of two heavy and two light bosons
Few-Body Syst 59, 64 (2018)
[arxiv:1802.06237]
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3

BEC of 
density 𝑛0

impurity

“Bose polaron”

Short-range repulsion

Small scattering 
length 𝑎𝐵 > 0

boson

𝑛0𝑎𝐵
3 ≪ 1

“Artificial nucleon”

How do they interact?
How can they cluster?

2

boson

Polaron: particle interacting with a medium

Small or large 
scattering length 𝑎

impurity boson

Short-range attraction



Ψ =

One Bose polaron

The polaron problem can be treated as a set of coupled few-body problems
(Truncated basis method)

One-body Three-bodyTwo-body

+ + +⋯
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2𝜇
𝑛0 < 0

One Bose polaron

Observation of the Bose polaron

Jørgensen et al, PRL 117, 055302 (2016)

Ming-Guang Hu et al, PRL 117, 055301 (2016)

87Rb + 40K

39K|−1〉 + 39K|0〉

BEC impurities

BEC impurities

1/𝑎

𝑎 ≤ 0 𝑎 = ±∞ 𝑎 > 0
weak strongresonant

Dimer



Ψ =

Two Bose polarons

The two-polaron problem can be treated as a set of coupled few-body problems
(Truncated basis method)

Two-body Four-bodyThree-body

+ + +⋯

Excitations can mediate an interaction between the two impurities
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Two Bose polarons
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Resonant interaction

Yukawa potential

𝑉 𝑟 = −
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𝑚
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Two Bose polarons

Weak interaction Resonant interaction

𝑉 𝑟 ∝ −𝑎2𝑛0
𝑒− 2𝑟/𝜉

𝑟

Yukawa potential

𝑉 𝑟 = −
ℏ2

𝑚

0.16

𝑟2

Efimov potential

“exchange of virtual bosons” “exchange of real bosons”

𝑎
𝑎



At resonance 𝑎 = ±∞

𝑟 [𝑛0
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Two Bose polarons

𝑀

𝑚
= 19

𝑛0𝑎𝐵
3 = 0.00001

Mass of 
impurities

Mass of 
bosons

Ex: 
impurities: Cesium-133
Bosons: Lithium-7 

Density of 
bosons

Scattering length 
of bosons

Calculation of the spectrum at a given mass ratio
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Inverse scattering length

weak strongresonant

E
n
e
rg
y

1/𝑎

Scattering continuum

Yukawa Efimov

“Artificial deuteron”

2 
4𝜋ℏ2𝑎

2𝜇
𝑛0 < 0

Two Bose polarons



Ψ =

Two Bose polarons

The two-polaron problem can be treated as a set of coupled few-body problems

Two-body Four-bodyThree-body

+ + +⋯
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Ψ =

Two Bose polarons

The two-polaron problem can be treated as a set of coupled few-body problems

Two-body Four-bodyThree-body

+ + +⋯

𝑉(𝑟) 𝑉(𝑟)



FOUR-BODY PROBLEM: 2+2 bosons



FOUR-BODY PROBLEM: 2+2 bosons

𝑎 𝑎𝐵

𝑎

𝑎

𝑎

3-body cutoff Λ3 ∼ 𝑙𝑣𝑑𝑊
−1

Separable interaction model:

𝑉 =
4𝜋ℏ2

2𝜇
𝑔|𝜙⟩⟨𝜙|

𝑉𝐵 =
4𝜋ℏ2

𝑚
𝑔𝐵|𝜙𝐵⟩⟨𝜙𝐵|

𝜙 𝑝 = ቊ
1 for 𝑝 ≤ Λ
0 for 𝑝 > Λ

Scattering length 𝑎 = 𝑔−1 +
2

𝜋
Λ

−1

Scattering length 𝑎𝐵 = 𝑔𝐵
−1 +

2

𝜋
ΛB

−1

Contact interaction limit: Λ → ∞

Strong repulsion limit:  𝑔𝐵 → ∞

𝜙𝐵 𝑝 = ቊ
1 for 𝑝 ≤ ΛB
0 for 𝑝 > ΛB

𝑔 < 0

𝑔𝐵 > 0



FOUR-BODY PROBLEM: 2+2 bosons
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FOUR-BODY PROBLEM: 2+2 bosons

3-body cutoff Λ3 ∼ 𝑙𝑣𝑑𝑊
−1
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𝑎

𝑎

𝑎
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Inverse scattering length 1/a

Energy spectrum

A moderate repulsion between 
bosons can suppress the four-body 
bound state

(133Cs in 7Li)
𝑀

𝑚
= 19



② Polaron physics: summary

◼ The 3-body Efimov effect in mass imbalanced systems close to 
unitarity affects the polaron physics. The mediated interaction 
changes from Yukawa to Efimov type, and leads to bipolarons.

◼ A simple single-excitation picture captures this physics.

◼ More consistent picture with more excitations?

◼ More polarons.

Outlook



③Miscibility physics

Dmitry Petrov

LPTMS, Orsay

Mixed bubbles in Bose-Bose mixtures
Phys. Rev. Lett. 126, 115301 (2021) 
[arXiv:2008.05870]



Mixture

Mixture of cold atoms: many-body

𝑔𝑖𝑗 =
4𝜋ℏ2𝑎𝑖𝑗

𝑚

𝑔11 > 0

𝑔12 < 0

𝑔22 > 0

Repulsion

Repulsion

Attraction

Mean-field theory: 

The coupling constants are 
given by the scattering lengths

𝐸/𝑉 =
1

2
𝑔11𝑛1

2 +
1

2
𝑔22𝑛2

2 + 𝑔12𝑛1𝑛2

Weak interactions, far 
from unitarity!
(no Efimov effect)



Mixture

Mixture of cold atoms: many-body

Attraction |𝑔12|

Mean-field theory: 

𝑔11𝑔22

𝐸/𝑉 =
1

2
𝑔11𝑛1

2 +
1

2
𝑔22𝑛2

2 + 𝑔12𝑛1𝑛2

Collapsed (solid)



∝ 𝑛5/2

Quantum liquid

𝐸/𝑉 =
1

2
𝑔11𝑛1

2 +
1

2
𝑔22𝑛2

2 + 𝑔12𝑛1𝑛2 + 𝐸𝐿𝐻𝑌(𝑛1, 𝑛2)

Beyond mean-field theory:  (Bogoliubov theory)

Mixture

Mixture of cold atoms: many-body

Collapsed (solid)

Attraction |𝑔12|

𝑔11𝑔22

Dmitry Petrov
Prediction (2015)

Observation (2018)



Mixture of cold atoms: repulsive

Mixture

𝑔11 > 0

𝑔12 > 0

𝑔22 > 0

Repulsion

Repulsion

Repulsion

Mean-field theory: 

𝐸/𝑉 =
1

2
𝑔11𝑛1

2 +
1

2
𝑔22𝑛2

2 + 𝑔12𝑛1𝑛2



Mixture of cold atoms: repulsive

Repulsion

Mixture

𝑔12

Like oil and water (but gases!)

𝑔11𝑔22

Mean-field theory: 

𝐸/𝑉 =
1

2
𝑔11𝑛1

2 +
1

2
𝑔22𝑛2

2 + 𝑔12𝑛1𝑛2

Separated



Mixture of cold atoms: repulsive

Repulsion

Papp et al., PRL 101, 040402 (2008)

Rubidium atom mixture (85Rb + 87Rb) Rubidium atom mixture (85Rb + 87Rb)

Mixture Separated

𝑔12

𝑔11𝑔22



Mixture of cold atoms: repulsive

Repulsion 

𝑔12 > 𝑔11𝑔22𝑔12 < 𝑔11𝑔22 − 𝜖

Mixed

𝑔12

𝑔11𝑔22

Separated

Beyond mean-field theory: 

𝐸/𝑉 =
1

2
𝑔11𝑛1

2 +
1

2
𝑔22𝑛2

2 + 𝑔12𝑛1𝑛2 + 𝐸𝐿𝐻𝑌(𝑛1, 𝑛2)

Partially mixed
“mixed bubble”



③Miscibility physics: Summary

◼ Close to miscibility/immiscibility threshold of a Bose mixture, 
quantum fluctuations allow the existence of partially mixed 
bubbles, bearing some similarity to quantum liquid droplets.

◼ Compared to the liquid droplet, the mixed bubble may be 
difficult to observe experimentally.



④ Universal trimers of fermions

Shallow Trimers of Two Identical Fermions 
and One Particle in Resonant Regimes
[arxiv:2112.02983]

Ludovic Pricoupenko
Sorbonne Université

Christiane Schmickler
RIKEN
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2 identical fermions + 1 particle
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length 𝑎

Efimov effect

Efimov attraction:   𝑉3𝐵 𝑅 ∼ −
0.17
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2 identical fermions + 1 particle

S-wave 
scattering 
length 𝑎

𝑀/𝑚

𝑀

𝑚

8.1726… 13.607…

Efimov effectKartavtsev-Malykh

e.g.
No trineutron

J. Phys. B 40 1429 (2007)

1/𝑎

s-wave
dimer

trimer
(𝐽 = 1−)

1/𝑎

s-wave 
dimer

𝑀 1/𝑎

s-wave 
dimer

trimer

(𝐿 = 0)

(𝐽 = 1−)

Unstable

Efimov attraction:   𝑉3𝐵 𝑅 ∼ −
𝑀

𝑚

0.17

𝑅2

Centrifugal repulsion:   +
𝐿(𝐿+1)

𝑅2

Stable



2 identical fermions + 1 particle

𝑀/𝑚

8.1726… 13.607…

Efimov effectKartavtsev-Malykh

P-wave 
scattering 
volume 𝑣

?

S-wave 
scattering 
length 𝑎

𝑀

𝑚

1/𝑎

s-wave
dimer

trimer
(𝐽 = 1−)

1/𝑎

s-wave 
dimer

J. Phys. B 40 1429 (2007)

𝑀 1/𝑎

s-wave 
dimer

trimer

(𝐿 = 0)

(𝐽 = 1−)



2 identical fermions + 1 particle

𝑀

𝑚
Efimov effect

𝑀/𝑚

8.1726… 13.607…

Kartavtsev-Malykh

P-wave 
scattering 
volume 𝑣

S-wave 
scattering 
length 𝑎

𝑀

𝑚

1/𝑎

s-wave 
dimer

1/𝑎

s-wave
dimer

trimer
(𝐽 = 1−)

|𝑣| < 𝑣𝑐 J. Phys. B 40 1429 (2007)

𝑀 1/𝑎

s-wave 
dimer

trimer

(𝐿 = 0)

(𝐽 = 1−)



2 identical fermions + 1 particle

𝑀

𝑚

Efimov
effect

Kartavtsev-
Malykh

P-wave 
scattering 
volume 𝑣

𝑀/𝑚

8.1726… 13.607…

𝑣 > 𝑣𝑐
1/𝑎

s-wave 
dimer

1/𝑎

s-wave 
dimer

trimer

Borromean

1/𝑎

s-wave 
dimer

1/𝑎

s-wave
dimer

trimer
(𝐽 = 1−)

|𝑣| < 𝑣𝑐

S-wave 
scattering 
length 𝑎

𝑀

1/𝑎

s-wave 
dimer

trimer

(𝐿 = 0)

(𝐽 = 1−)



2 identical fermions + 1 particle

𝑀

𝑚

𝑈

𝑉

𝑀

𝑈 =

𝑚

𝑔𝑚|Φ𝑚⟩⟨Φ𝑚|

𝑉 = 𝜉|𝜒⟩⟨𝜒|

Separable interactions:

With 𝒌 𝜒 = 𝜒(𝑘)

With 𝒌 Φ𝑚 = 𝜙 𝑘 𝒌 ⋅ 𝒆𝑚

S wave:

P wave:

𝑉

Form factors:

Cut-off: ቊ
1 for 𝑘 ≤ Λ
0 for 𝑘 > Λ

Gaussian:  exp(−𝑘2/Λ2)

Yamaguchi:   1 +
𝑘2

Λ2

−1

Yamaguchi-squared:   1 +
𝑘2

Λ2

−2

The model parameters 𝜉, Λ0 and 𝑔𝑚, Λ1 are adjusted to give the same low-energy parameters:

S wave: scat. length 𝑎, eff. range ҧ𝑟𝑒 P wave: scat. volume 𝑣, width parameter ത𝛼

𝑘 cot 𝛿𝑆 = −
1

𝑎
+

1

2
𝑟𝑒𝑘

2 +⋯ and ҧ𝑟𝑒 = 𝑟𝑒(𝑎 → ∞) 𝑘 cot 𝛿𝑃 = −
1

𝑘2𝑣
− 𝛼 +⋯ and ത𝛼 = 𝛼(𝑣 → ∞)



2 identical fermions + 1 particle

𝑀

𝑚

𝑉

𝑀

𝑉

Without p-wave interaction:

Mass ratio 
𝑀

𝑚
= 9

“S-wave 
induced 
trimer”



2 identical fermions + 1 particle

𝑀

𝑚

𝑉

𝑀

𝑉

Without p-wave interaction:

Mass ratio 
𝑀

𝑚
= 9

Two-body radial wave function



2 identical fermions + 1 particle

𝑀

𝑚

𝑉

𝑀

𝑉

With p-wave interaction: 𝑎 = ∞ and 𝑣 = ∞
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2 identical fermions + 1 particle

𝑀

𝑚
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𝑉

Critical scattering volume for a Borromean state
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2 identical fermions + 1 particle

𝑀

𝑚

𝑉

𝑀

𝑉

Critical scattering volume for a Borromean state

𝑈



④ Universal trimers of fermions: summary

𝑀

𝑚

P-wave 
scattering 
volume 𝑣

S-wave 
scattering 
length 𝑎

𝑀

◼ In 2 fermions + 1 particle systems with p-wave 
interactions, the universal trimers predicted by 
Kartavtsev and Malykh for mass ratios between 
8.17 and 13.6 always exist for (very!) large 
scattering lengths.

◼ However, the p-wave interaction enriches the 
spectrum by at least one additional state, which 
can be Borromean and exist for any mass ratio.



𝑀

𝑚

P-wave 
scattering 
volume 𝑣

◼ Beyond the separable approximation?

◼ Van der Waals universality for atoms?

◼ Coupled-channel interactions?

◼ Stability against recombination?

S-wave 
scattering 
length 𝑎

𝑀

④ Universal trimers of fermions: summary

Outlook



⑤ Trimer phase of fermionic mixtures

Universal clusters as building blocks of stable quantum matter
Phys. Rev. A 93, 053611 (2016) [arxiv:1507.06309v2]

Shimpei Endō
Tohoku University

Antonio M. García-García 
Shanghai Jiao Tong University

Scattering of universal fermionic clusters in the resonating group method
J. Phys. B, 49, 3, 034002 (2016)  [arxiv:1507.06373v1]



3-body Efimov effect
13.6

N+1 fermions
Universal regime of large scattering length 𝑎
and negligible scattering volume

𝑎

𝑀
𝑚

4-body Efimov effect (Castin, Mora & Pricoupenko 2010)
13.3

Mass ratio 
𝑀/𝑚

Energy

1

dimer
−

1

𝑀
+
1

𝑚

ℏ2

2𝑎2

Trimers 1−

(Kartavtsev-Malykh 2007)

8.17 12.98.86

Tetramer 1+

(Blume 2012)

13.279
5-body Efimov effect (Bazak & Petrov 2017)

Pentamer 0−

(Bazak & Petrov 2017)

9.67



N+1 fermions
Universal regime of large scattering length 𝑎
and negligible scattering volume

𝑎

𝑀

◼ Is there a 6-body Efimov effect?

◼ Is there a universal hexamer?

◼What about the large N limit?

Shell-model argument
(Bazak & Petrov):

𝑌1,−1

𝑌1,0 𝑌1,1

?



Two-component fermion mixture

8.17 <
𝑀

𝑚
< 8.86… 𝐸2 < 𝐸3 < 2|𝐸2|

Two dimers are favoured over one trimer No tetramers, pentamers, etc…

Density imbalance 𝑛2/𝑛1

Dimers and particles 1 Dimers and trimers Trimers and particle 2

0 1 2



Two-component fermion mixture

Energy

𝑀

𝑚
≈ 1 8.17 <

𝑀

𝑚
< 8.86…

1/𝑎

Energy

1/𝑎

BCS

BEC

BCS+normal

trimer phase



Two-component fermion mixture
The trimers are 
• fermions
• with one unit of angular momentum 𝑱 = 𝟏
• So there are three degenerate rotational states :

𝑚 = −1 𝑚 = 0 𝑚 = +1



Trimer mixture phase

At low density, the system forms a mixture of trimers

2-component Fermi system 3-component Fermi system

SU(3) symmetry: same scattering 
length 𝑎𝑡𝑡 for all pairs

𝑎𝑡𝑡
∼ 0𝑎𝑡𝑡

𝑎𝑡𝑡

interaction 
strength



Trimer mixture phase

Is the phase superfluid or not?

It depends on whether the trimer-trimer interaction is attractive or not.

No 6-body bound state means the interaction is weak, but is it repulsive or attractive?

How to solve the six-body problem?

On the one hand, identical 
fermions tend to repel

On the one hand, there is 
3-body Efimov attraction



The Resonating Group Method (RGM)

John A. Wheeler
“Molecular Viewpoints in 
Nuclear Structure” (1937)
Physical Review 52, 1083

Ψ = 𝑆 𝜙𝐴 1,2, … , 𝑛 𝜙𝐵 𝑛 + 1, 𝑛 + 2,… , 𝑁 𝜓 𝑅

Cluster A

Cluster B

No excitation 
(rearrangement) 
during collision

cluster A cluster B

relative 
motion

Anti-symmetrisation

𝑅

𝑉𝐴𝐵

𝐾 ⋅ −
ℏ2

2𝜇
𝛻2𝜓 + 𝑉 ⋅ 𝜓 = 0

Variational principle 𝐾 ⋅ 𝜑 = 𝜙𝐴𝜙𝐵 𝑆 𝜙𝐴𝜙𝐵𝜑

𝑉 ⋅ 𝜑 = 𝜙𝐴𝜙𝐵 𝑉𝐴𝐵|𝑆 𝜙𝐴𝜙𝐵𝜑

Effective potential (non-local) Local potential

𝑉loc 𝑟 = ∫ 𝑑3𝑟′𝑉(𝑟, 𝑟′)

≈ 𝜑



The Resonating Group Method
How well does it work for universal fermionic clusters?

Fermion + dimer scattering

S wave

Petrov et al. PRA 71 012708 (2005)

/𝑎𝑎𝑓𝑑



The Resonating Group Method
How well does it work for universal fermionic clusters?

Fermion + dimer scattering

P wave

Endo et al, Few-body Syst. (2011)

/𝑎
3

𝑣𝑓𝑑



The Resonating Group Method
How well does it work for universal fermionic clusters?

Dimer + dimer scattering

S wave

Petrov et al. PRA 71 012708 (2005) 0.6
0.75

𝑎𝑑𝑑



The Resonating Group Method

Trimer + Trimer scattering

S wave

𝑎𝑡𝑡 > 0

𝑎𝑡𝑡

Local potential 𝑽 given by 
9-dimensional integrals, 
calculated by Monte-Carlo



The Resonating Group Method

Trimer + Trimer scattering

(local approximation)
𝑎𝑡𝑡



⑤ Trimer phase: Summary

◼ 2-component mass-imbalanced Fermi systems close to unitarity can 
turn into a 3-component Fermi system of universal trimers

◼ The resonating group method predicts a repulsion between universal 
trimers, implying the existence of a many-body phase that is a non-
superfluid SU(3) Fermi gas.

◼ Can we solve this 6-body problem?
◼ What if we include the p-wave interaction?

Outlook



General summary

◼ Two-component boson mixtures near unitarity exhibit the 3-body 
Efimov effect, which plays a role in many-body settings like the 
polaron problem. Non-resonant interactions also lead to interesting 
phenomena like liquid droplets and partially-mixed bubbles.

◼ Two-component fermion mixtures near unitarity can exhibit a rich 
spectrum of universal trimers below the Efimov critical mass ratio. 
The universal trimers may form an SU(3) Fermi gas.


