Exploring universality with a many-body density functional

Giuseppina Orlandini

and

In collaboration with

Alejandro Kievsky and Mario Gattobigio

Motivations

- Exploring systems from "few-body" to "many-body" within a unified picture consider a very powerful approach: Energy Density Functional
- However, mantain translation/Galileian invariances
- here is a problem... but we will see how to overcome it
- Study systems that are close to the unitary limit and are suited for effective expansion of the interaction we will see an example at the end

Summary

Fast recall of Density Functional Theory (DFT) and Kohn-Sham (KS) equation

(systems of interacting particles placed in an external one-body potential)

- Self bound systems and Hyperspherical Coordinates (interacting particles, no external one-body potential)
- Different formulation of DFT and KS equation (the many-body hyperradial density)
- Application to bosons close to the unitary limit (⁴He atom clusters)

1: Fast recall of Density Functional Theory (DFT) and Kohn-Sham (KS) equation

(systems of interacting particles placed in an external one-body potential)

The EDF approach in a couple of slides:

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

1)
$$E(n) \ge E_0$$
 2) $E(n) = E_0$

P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964)

1)
$$E(n) \ge E_0$$
 2) $E(n) = E_0$

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i < j}^{N} V(\vec{r}_i - \vec{r}_j) + \sum_{i=1}^{N} v_{ext}(\vec{r}_i) \equiv \mathbf{T} + \mathbf{V} + \mathbf{v}_{ext}^{[1]}$$

 $oldsymbol{\mathsf{n}}$ is the $oldsymbol{\mathsf{one-body}}$ density: the probability to find any of the N (indistinguishable) particles at position $oldsymbol{\mathsf{r}}$, namely the following $oldsymbol{\mathsf{integral}}$

$$\mathbf{n} \equiv n^{[1]}(\vec{r}) = \frac{1}{N} \int d\vec{r}_1 d\vec{r}_2 ... d\vec{r}_N \Psi^*(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) \sum_{i=1}^N \delta(\vec{r} - \vec{r}_i) \Psi(\vec{r}_1, \vec{r}_2, ..., \vec{r}_N)$$

What is E(n)?

$$E[\mathbf{n}] = \langle \Psi^{\mathbf{n}} | T + V | \Psi^{\mathbf{n}} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n^{[1]}(\vec{r})$$

$$\langle \Psi^{\mathbf{n}}|T + V|\Psi^{\mathbf{n}}\rangle \equiv \min_{\Psi \to \mathbf{n}} \langle \Psi|T + V|\Psi\rangle \equiv F(\mathbf{n})$$

The proof of the Theorem (following Levy 1979):

Obvious! because of the Rayleigh-Ritz variational principle 1) $E(n) \geqslant E_0$

$$2) E(n_{gs}) = E_0$$

$$E[\mathbf{n}_{gs}] = F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r}) \geq E_0$$
 because of $\mathbf{1}$)

$$F(\mathbf{n}_{gs}) \equiv \min_{\Psi \rightarrow \mathbf{n}_{gs}} \langle \Psi | T + V | \Psi \rangle \geq \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$$

because it is a minimum

by definition

$$E_0 = \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$$

therefore
$$E_0 \leq F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$$

Equal!

The **Kohn- Sham equation** is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of **independent** particles **that generates the same density as any given system of interacting particles.**

$$H_{KS} = T + \sum_{i} W_{KS}(\vec{r}_i)$$

$$n^{[1]}(\vec{r}) = \sum_{i} |\psi_i(\vec{r})|^2 = n^{[1]}_{gs}(\vec{r})$$

therefore

Kohn-Sham equation

$$\left(-\frac{\nabla^2}{2m} + W_{KS}(\vec{r})\right)\psi_i(\vec{r}) = \epsilon_i \psi_i(\vec{r})$$

The **Kohn- Sham equation** is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of **independent** particles **that generates the same density as any given system of interacting particles.**

$$H_{KS} = T + \sum_{i} W_{KS}(\vec{r_i})$$

$$n^{[1]}(\vec{r}) = \sum_{i} |\psi_i(\vec{r})|^2 = n^{[1]}_{gs}(\vec{r})$$

therefore

Kohn-Sham equation

$$\left(-\frac{\nabla^2}{2m} + W_{KS}(\vec{r})\right)\psi_i(\vec{r}) = \epsilon_i\psi_i(\vec{r})$$

 $E(n) = E_W(n)$ at min "W-representability" of the functional

The **Kohn- Sham equation** is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of **independent** particles **that generates the same density as any given system of interacting particles.**

$$H_{KS} = T + \sum_{i} W_{KS}(\vec{r_i})$$

$$n^{[1]}(\vec{r}) = \sum_{i} |\psi_i(\vec{r})|^2 = n^{[1]}_{gs}(\vec{r})$$

therefore

Kohn-Sham equation

$$\left(-\frac{\nabla^2}{2m} + W_{KS}(\vec{r})\right)\psi_i(\vec{r}) = \epsilon_i \psi_i(\vec{r})$$

By reductio ad absurdum one can show that $\mathbf{W}_{\mathbf{KS}}$ is unique!

The **Kohn- Sham equation** is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of **independent** particles **that generates the same density as any given system of interacting particles.**

$$H_{KS} = T + \sum_{i} W_{KS}(\vec{r_i})$$

$$n^{[1]}(\vec{r}) = \sum_{i} |\psi_i(\vec{r})|^2 = n_{gs}^{[1]}(\vec{r})$$

therefore

Kohn-Sham equation

$$\left(-\frac{\nabla^2}{2m} + W_{KS}(\vec{r})\right)\psi_i(\vec{r}) = \epsilon_i \psi_i(\vec{r})$$

The **Kohn- Sham equation** is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of **independent** particles **that generates the same density as any given system of interacting particles.**

$$H_{KS} = T + \sum_{i} W_{KS}(\vec{r_i})$$

$$n^{[1]}(\vec{r}) = \sum_{i} |\psi_i(\vec{r})|^2 = n^{[1]}_{gs}(\vec{r})$$

therefore

Kohn-Sham equation

$$\left(-\frac{\nabla^2}{2m} + W_{KS}(\vec{r})\right)\psi_i(\vec{r}) = \epsilon_i\psi_i(\vec{r})$$

But what is this one-body potential W_{KS} ???

The **Kohn- Sham equation** is the Schroedinger equation of a fictitious system (the "Kohn-Sham system") of **independent** particles **that generates the same density as any given system of interacting particles.**

$$H_{KS} = T + \sum_{i} W_{KS}(\vec{r_i})$$

$$n^{[1]}(\vec{r}) = \sum_{i} |\psi_i(\vec{r})|^2 = n^{[1]}_{gs}(\vec{r})$$

therefore

Kohn-Sham equation

$$\left(-\frac{\nabla^2}{2m} + W_{KS}(\vec{r})\right)\psi_i(\vec{r}) = \epsilon_i \psi_i(\vec{r})$$

Since the n_{qs} is the minimum of the density functional E(n), the KS potential is defined by

$$\frac{\delta E(\mathbf{n})}{\delta \mathbf{n}}\Big|_{\mathbf{n}=\mathbf{n}_{gs}} = 0 \iff W_{KS}(\vec{r}) = \frac{\delta V(\mathbf{n})}{\delta \mathbf{n}} + v_{ext}(\vec{r})$$

Therefore it is crucial to guess V(n)

$$V(\mathbf{n}) \simeq U_H(\mathbf{n}) + V_{exc}(\mathbf{n}) + V_{corr}(\mathbf{n})$$

2: Self bound systems and Hyperspherical Coordinates

(interacting particles, no external one-body potential)

For self-bound systems one requires Translation / Galieian invariance

$$\left[\mathsf{H},\,\mathsf{P}_{\mathsf{CM}}\,\right]=0\,\bigg/\,\left[\mathsf{H},\,\mathsf{R}_{\mathsf{CM}}\,\right]=0$$

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i \le j}^{N} V(\vec{r}_i - \vec{r}_j) + \sum_{i=1}^{N} C_{\text{ext}}(\vec{r}_i) \equiv \mathbf{T} + \mathbf{V} + \sum_{i=1}^{N} C_{\text{ext}}(\vec{r}_i)$$

For self-bound systems one requires Translation / Galieian invariance

$$\left[\mathsf{H},\,\mathsf{P}_{\mathsf{CM}}\,\right]=0\,\bigg/\,\left[\mathsf{H},\,\mathsf{R}_{\mathsf{CM}}\,\right]=0$$

$$H = \sum_{i=1}^{N} \frac{p_i^2}{2m} + \sum_{i < j}^{N} V(\vec{r}_i - \vec{r}_j) + \sum_{i=1}^{N} V(\vec{r}_i) \equiv \mathbf{T} + \mathbf{V} + \sum_{i=1}^{N} \mathbf{T} + \mathbf{V} + \sum_{i=1}^{N} \mathbf{T} + \sum_{i=1}^{N} V(\vec{r}_i - \vec{r}_j) + \sum_{i=1}^{N} V(\vec{r}_i - \vec{r}_j)$$

For self-bound systems one requires Translation / Galieian invariance

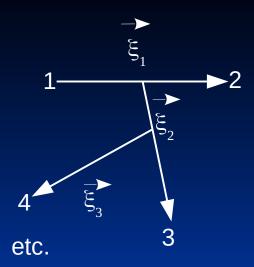
Having eliminated the CM coordinate we need a set of N-1 vectors i.e. 3N-3 independent coordinates:

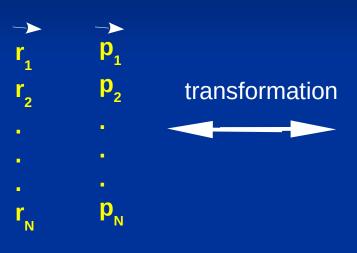
Jacobi coordinates

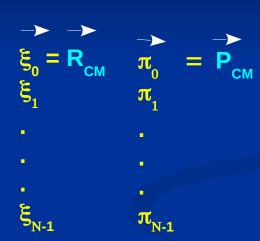
Jacobi coordinates

->

= distances between each particle "i" and the cm of the previous (N - i) particles





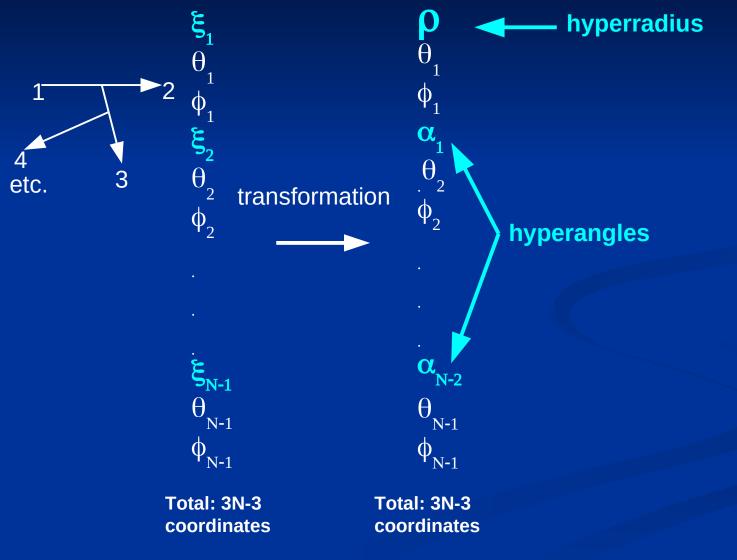


Remarks:

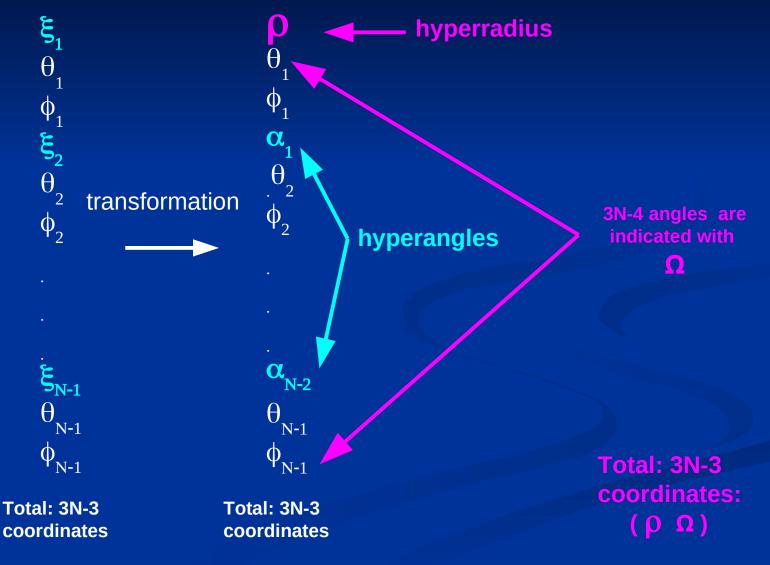
- When expressed in terms of Jacobi coordinates, any 1-body or 2-body potential becomes of "N-body nature"
- The translation invariant wave function is highly correlated (i.e. particles are not independent) beyond the correlation due to the dynamics

One can further transform the Jacobi coordinates into a new set of coordinates called Hyperspherical Coordinates

HYPERSPHERICAL COORDINATES

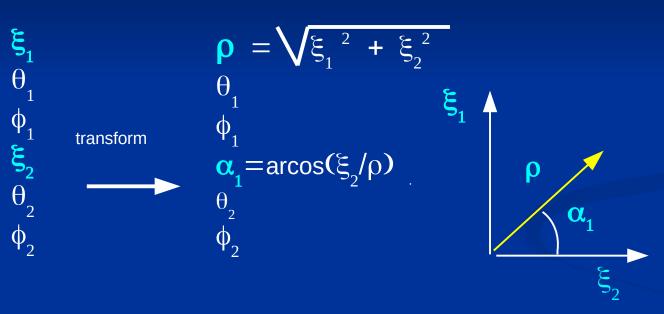


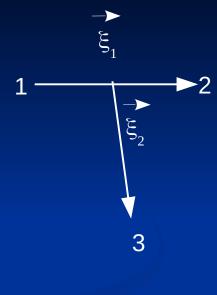
HYPERSPHERICAL COORDINATES



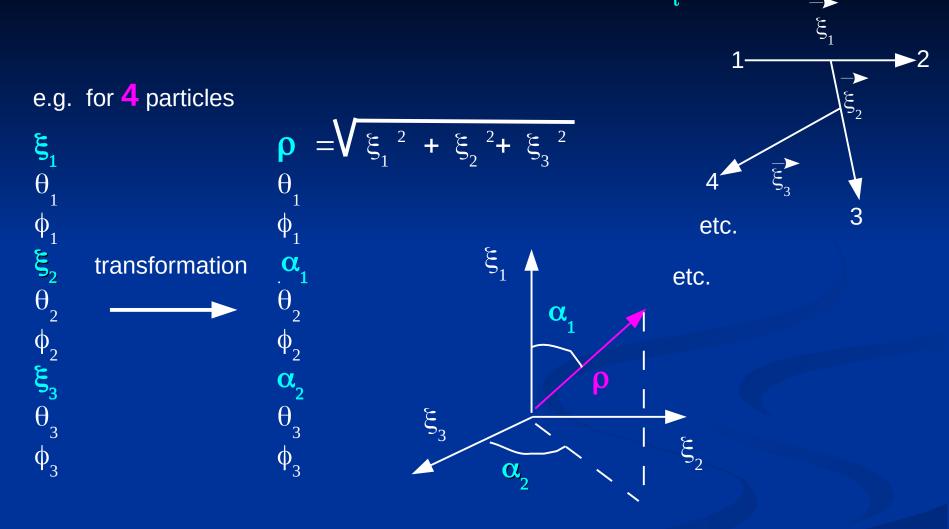
HOW ARE HYPERRADIUS p AND HYPERANGLES a DEFINED ???

e.g. for 3 particles





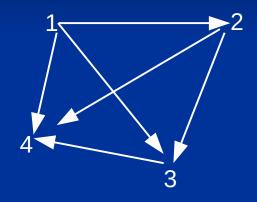
HOW ARE HYPERRADIUS p AND HYPERANGLES α DEFINED ???

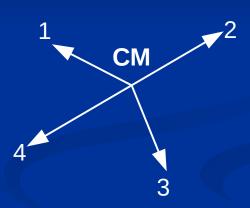


LET'S FOCUS ON THE HYPERRADIUS ():

$$\rho^2 \sim \Sigma_{ij} (\vec{r}_i - \vec{r}_j)^2$$

$$\rho^2 \sim \Sigma_i (r_i - R_{CM})^2$$





can be onsidered as a highly "collective" variable

Very interesting feature of Hyperspherical coordinates (HC):

With HC the expression of the 2 body invariant kinetic energy expressed in spherical coordinates is generalized to the N-body case

2 body: Kinetic Energy in SPHERICAL coordinates

$$T = \Delta_r - L^2/r^2 = -1/(2m) (\partial^2/\partial r^2 + 2/r \partial/\partial r) + L^2/r^2$$

The **spherical harmonics** Y_{lm} (θ , ϕ) are the eigenfunctions of the **angular momentum** L^2

N body: Kinetic Energy in HYPERSPHERICAL coordinates

T =
$$\Delta_{\rho}$$
 - $K^2 I \rho^2$ = -1/(2m) ($\partial^2/\partial \rho^2$ + (3N -4) $I \rho$ $\partial/\partial \rho$) + $K^2 I \rho^2$

The hyperspherical harmonics $Y_{\kappa,...}$ (Ω) are the eigenfunctions of hyperangular momentum K^2

2 body: Kinetic Energy in SPHERICAL coordinates

$$T = \Delta_r - \frac{L^2}{r^2} = -\frac{1}{(2m)} (\frac{\partial^2}{\partial r^2} + \frac{2}{r^2} + \frac{2}{r^2}) + \frac{L^2}{r^2}$$

The **spherical harmonics** Y_{lm} (θ , ϕ) are the eigenfunctions of the **angular momentum** L^2

N body: Kinetic Energy in HYPERSPHERICAL coordinates

$$T = \Delta_{\rho} - K^{2} / \rho^{2} = -1/(2m) (\partial^{2}/\partial \rho^{2} + (3N - 4) / \rho \partial/\partial \rho) + K^{2} / \rho^{2}$$

The hyperspherical harmonics $\mathbf{Y}_{\mathsf{K},\ldots}$ (Ω) indicated $\mathbf{Y}_{\mathsf{[K]}}$ (Ω) are the eigenfunctions of hyperangular momentum K^2

2 body: SPHERICAL HARMONICS

$$T = \Delta_{r} - L^{2}/r^{2} = -1/(2m) (\partial^{2}/\partial r^{2} + 2/r \partial/\partial r) + L^{2}/r^{2}$$

$$L^{2} Y_{lm} (\theta, \phi) = L (L+1) Y_{lm} (\theta, \phi)$$

N body: HYPERSPHERICAL HARMONICS

$$T = \Delta_{\rho} - K^2 I \rho^2 = -1/(2m) (\partial^2/\partial \rho^2 + (3N - 4) I \rho \partial/\partial \rho) + K^2 I \rho^2$$

$$K^2 Y_K (\Omega) = K (K+3N-5) Y_K (\Omega)$$

In terms of Hyperspherical coordinates the invariant Hamiltonian becomes

$$H_{inv} = (\Delta_{\rho} - K^{2}/\rho^{2}) + V(\rho, \theta_{1}\phi_{1} \theta_{2}\phi_{2} \dots \alpha_{1}\alpha_{2})$$

$$= (\Delta_{\rho} - K^{2}/\rho^{2}) + V(\rho, \Omega)$$

Remark:

When expressed in terms of Jacobi coordinates, even a 1-body operator becomes of "N-body nature"

Remarks in view of EDF:

- In H_{inv} there is no "real" one-body (IPM) density
- But one may define an analogous "many-body" density

$$n(r) \longrightarrow v(\rho)$$

$$r^{2}n^{[1]}(r) = \int d\Omega_{r} d\vec{r}_{2}...d\vec{r}_{N}\Psi^{*}(\vec{r},\vec{r}_{2},...,\vec{r}_{N})\Psi(\vec{r},\vec{r}_{2},...,\vec{r}_{N}) \qquad \qquad \rho^{3N-4} \nu(\rho) = \int d\Omega \ \Psi^{*}(\rho,\Omega)\Psi(\rho,\Omega)$$

The idea is to try an EDF approach for ν (ρ)

3: Different formulation of DFT and KS equation

(the many-body hyperradial density)

The EDF approach for v(p)

The **ANALOGOUS** of the Hohenberg Kohn statement:

1)
$$E(\mathbf{v}) \geqslant E_0$$
 2) $E(\mathbf{v}_{gs}) = E_0$

$$H_{inv} = (\Delta_{\rho} - K^2 / \rho^2) + V(\rho, \Omega)$$

What is
$$E(\mathbf{v})$$
?

$$E[\nu] = \langle \Psi^{\nu} | T + V | \Psi^{\nu} \rangle \equiv \min_{\Psi \rightarrow \nu} \, \langle \Psi | T + V | \Psi \rangle$$

The proof goes along the same line as before

Before:

The proof of the Theorem (following Levy 1979):

Obvious! because of the Rayleigh-Ritz variational principle 1) $E(n) \geqslant E_0$

$$2) E(n_{gs}) = E_0$$

$$E[\mathbf{n}_{gs}] = F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r}) \ge E_0$$
 because of 1)

$$F(\mathbf{n}_{gs}) \equiv \min_{\Psi \rightarrow \mathbf{n}_{gs}} \langle \Psi | T + V | \Psi \rangle \geq \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$$

because it is a minimum

by definition

$$E_0 = \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$$

therefore
$$E_0 \leq F(\mathbf{n}_{gs}) + \int d\vec{r} \, v_{ext}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$$

Equal!

Now:

The proof of the Theorem (following Levy 1979):

1) $E(n) \geqslant E_0$ Obvious! because of the Rayleigh-Ritz variational principle

$$2) E(n_{gs}) = E_0$$

Proof of 2):

$$E[\mathbf{n}_{gs}] = F(\mathbf{n}_{gs}) + \int d\vec{r} \exp(r) n_{gs}^{[1]}(\vec{r}) \ge E_0$$

because of 1)

$$F(\mathbf{n}_{gs}) \equiv \min_{\Psi \rightarrow \mathbf{n}_{gs}} \langle \Psi | T + V | \Psi \rangle \geq \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle$$

because it is a minimum

by definition

$$E_0 = \langle \Psi_{gs} | T + V | \Psi_{gs} \rangle + \int d\vec{r} \, v_{sa}(\vec{r}) \, n_{gs}^{[4]}(\vec{r})$$

therefore
$$E_0 \leq F(\mathbf{n}_{gs}) + \int d\vec{r} \, \phi_{xt}(\vec{r}) \, n_{gs}^{[1]}(\vec{r})$$

Equal!

The real use of the theorem goes via the "Analogous" of the Kohn-Sham equation

The "Analogous" of the Kohn- Sham equation is the Schroedinger equation of a fictitious system governed by an hypercentral potential that generates the same hyperradial density $V(\mathbf{p})$ as that of the real Hamiltonian, namely one has

$$H_{AKS} = T + W_{AKS}$$
 (p) where W_{AKS} is such that $E(v) = E(v_{W})$

Again, by reductio ad absurdum one can show that $W_{AKS}(\rho)$ is unique!

Therefore finding the minimum of \mathbf{E} (\mathbf{v}) is equivalent to solve a one-dimensional Schr .Eq.

$$\left[-\frac{1}{(2m)} \left(\frac{\partial^2}{\partial \rho^2} + \frac{(3N - 4)}{\rho} \right) \rho \frac{\partial}{\partial \rho} + \frac{K^2}{\rho^2} + \frac{W_{AKS}}{Q} (\rho) \right] \Phi_{Kmin}(\rho) = E_0 \Phi_{Kmin}(\rho)$$

$$\rho^{(3N-4)} \nu_W (\rho_{gs}) = |\Phi_{K^{min}}(\rho)|^2$$

$$K_{min} = 0$$
 for bosons $K_{min} \neq 0$ for fermions

Remember:

for KS:

Since the n_{gs} is the minimum of the density functional E(n), the KS potential is defined by

$$\left. \frac{\delta E(\mathbf{n})}{\delta \mathbf{n}} \right|_{\mathbf{n} = \mathbf{n}_{gs}} = 0 \Longleftrightarrow W_{KS}(\vec{r}) = \frac{\delta V(\mathbf{n})}{\delta \mathbf{n}} + v_{ext}(\vec{r})$$

Therefore it is crucial to guess V(n)

$$V(\mathbf{n}) \simeq U_H(\mathbf{n}) + V_{exc}(\mathbf{n}) + V_{corr}(\mathbf{n})$$

???

for AKS:

???

Simplest guess:

remember

$$H_{inv} = (\Delta_{\rho} - K^2/\rho^2) + V(\rho, \Omega)$$
=
 $V^{[2]}(\rho, \Omega) + V^{[3]}(\rho, \Omega) + ...$

Try integral on the hyperangular part of the ground state wave function Sort of "mean field" for the ρ coordinate!

4: Application to bosons close to the unitary limit (⁴He atoms)

Helium clusters

Observations:

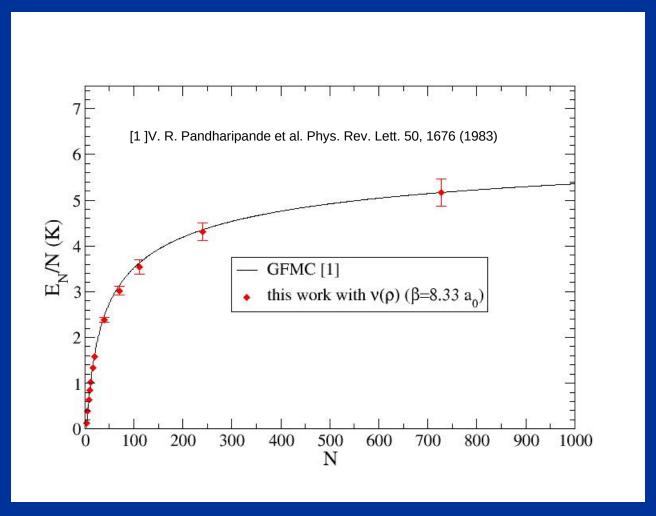
The dimer of ⁴He has a binding energy of about **1 mK**, three orders of magnitude less than the typical energy scale of \hbar^2 /m $r_{vdW}^2 = 1.677$ K,

Moreover, the two-body scattering length has been estimated to be $\mathbf{a} \approx 190 \ \mathbf{a}_0$, twenty times larger than \mathbf{r}_{vdW} =5.08 \mathbf{a}_0 . In the limiting case, $\mathbf{a} \rightarrow \infty$, the system is located at the unitary limit well suited for an effective expansion of the interaction

The leading order (LO) of this effective theory has two terms, a **two-body term** and a **three-body term**, associated with two constants, named low-energy constants (LECs), needed to determine their strengths, usually fixed by the 2 and 3-body binding energies.

RESULTS FOR BINDING ENERGIES FOR ANY NUMBER N OF PARTICLES

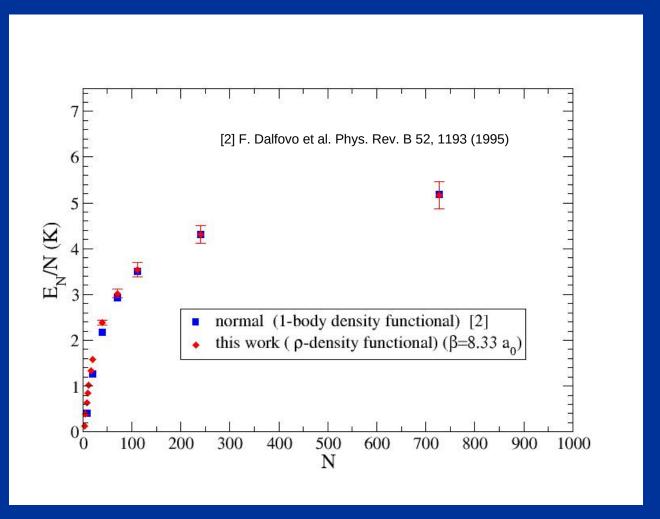
Phys. Rev. A 104, 030801 (2021) **BE/N FOR ANY N**



For the **lowest N** values we observe **substantial independence** from the three-body range β with the overall best description inside the interval **7.5** a $0 < \beta < 9.0$ a_n

the central value is $\beta = 8.33 a_0$ with corresponding B = 7.211 K

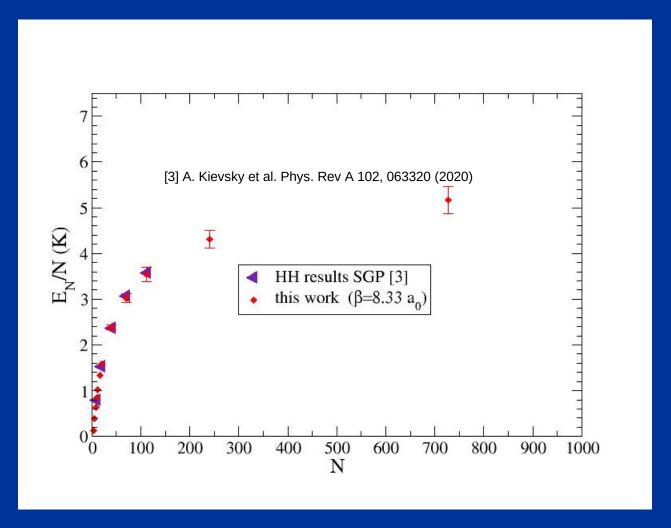
Phys. Rev. A 104, 030801 (2021) **BE/N FOR ANY N**



For the **lowest N** values we observe *substantial independence* from the three-body range β with the overall best description inside the interval 7.5 a $0 < \beta < 9.0$ a_n

the central value is $\beta = 8.33 a_0$ with corresponding B = 7.211 K

Phys. Rev. A 104, 030801 (2021) **BE/N FOR ANY N**

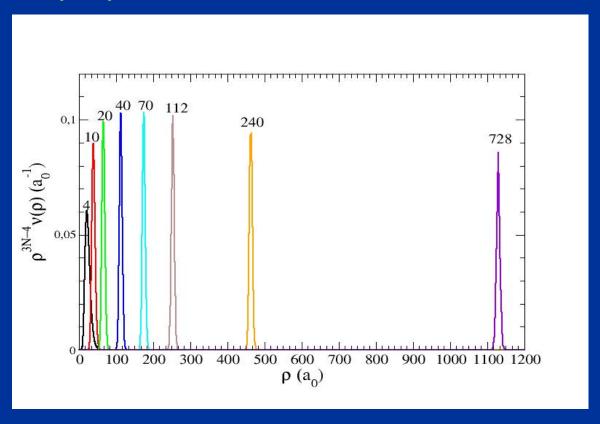


For the **lowest N** values we observe **substantial independence** from the three-body range β with the overall best description inside the interval **7.5** a $0 < \beta < 9.0$ a

the central value is $\beta = 8.33 a_0$ with corresponding B = 7.211 K

(reduced) many-body density $\mathbf{v}(\mathbf{p})$ for selected number of particles

Phys. Rev. A 104, 030801 (2021)



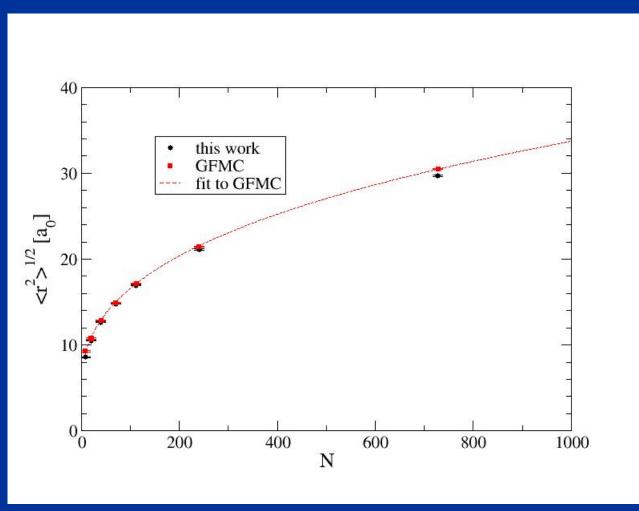
Extremely localized density around a value almost linear with N.

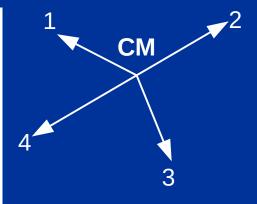
Very compact object. Closer particles are discouraged (incompressible?) Also larger values are discouraged (little clusterization?).

Mean square radius $\rho^2 \sim \Sigma_i (r_i - R_{CM})^2$

$$\rho^2 \sim \Sigma_i (r_i - R_{CM})^2$$

Phys. Rev. A 104, 030801 (2021)





CONCLUSIONS

- An energy density functional approach has been formulated in terms of the density v(p) where p is a translation invariant variable of collective nature
- It has been shown that the functional E[v] is governed by a unique (unknown) hyperradial potential W (ρ).
- The solution of a single hyperradial equation with such an hyperradial potential allows to determine the binding energy for any N in a straightforward way.
- We have applied this framework to the bosonic case focusing on ⁴He clusters.
- The guess for **W** (ρ) has been inspired by the effective theory approach together with a generalization of the mean field concept.
- Extremely satisfying results have been found. The key point has been using the range of the three-body interaction β, to fine tune the W (ρ).

OUTLOOK

- Extension to trapped systems
- Extension to Fermions. In Nuclear Physics: W (ρ) ??? EFT ???)

