

Molecular simulations of lipid droplets

Luca Monticelli

CNRS / U Lyon (France)

Lipid droplets are emulsions

Biology: organelles regulating energy metabolism

LD formation: in the ER

LD structure

Lipid droplet formation: open questions

What is the role of membrane properties? Role of lipid composition? Role of proteins?

Lipid droplet formation: open questions

Our goal: to understand the mechanism of LD formation Impact: biology, metabolic diseases, viral infection, biotech

Asymmetric budding (1) and LD proteome (2)

Simulating lipid droplets

W.A. Prinz et al., J Cell Biol, 2015

Droplet diameter: ~35 nm Bilayer size: 78x78 nm

Droplet size: ~38 nm

Estimated number of atoms: 20M

The MARTINI CG model

Marrink *et al., J Phys Chem B* (2007), 111, 7812 Monticelli *et al., JCTC* (2008), 4, 819 Souza *et al., Nature Methods* (2021), 18, 382

LD size: 36 nm Bilayer lateral size: 78 x 78 nm ~2M CG particles (20M atoms) MD simulations: up to 50 µs

Lipid droplet budding: a theoretical approach

- For a given LD
 volume V , the LD
 shape is obtained
 by minimizing the
 free energy
- Theory contains approximations and unknowns

Foret et al, Biophys J 2017

The theory predicts spontaneous budding, but...

- Small size: symmetric nascent LD (embeded)
- Large size: spherical LDs, should bud out spontaneously; at which size?(λ_c~10nm?)
- LD shape can be predicted for any size

Simulating nascent LDs of different sizes, calculating shapes

Nascent LDs up to 35 nm in diameter do not bud out

Problems with the theory? Artifacts in the simulations?

Nascent LDs up to 35 nm in diameter do not bud out

Problems with the theory? Artifacts in the simulations?

Nascent LDs up to 35 nm in diameter do not bud out

Budding requires more PL in one leaflet, that is impossible due to periodic boundary conditions and slow flip-flop

Analyzing LD shape

3. time averaging, radial averaging

Analyzing LD shape

3. time averaging, radial averaging

All simulated LDs are *far from spherical shape (budding)*

- All simulated LDs are *far from spherical shape (budding)*
- Larger LDs become spherical to minimize interfacial energy
 → surface tension determines LD shape

- All simulated LDs are *far from spherical shape (budding)*
- Larger LDs become spherical to minimize interfacial energy
 → surface tension determines LD shape
- Budding can be controlled by *tuning the surface tension*

Fitting simulated shapes with the theoretical shape

Imposing zero tension in bilayer

Bad fit, does not improve by changing elastic parameters

Fitting simulated shapes with the theoretical shape

Allowing tension in the bilayer

Bad fit, does not improve by changing elastic parameters

Best fit for γ_m =3.8 mN/m, γ_b =3 mN/m Unrealistically high γ_b -> artifact?

Proteins are essential components of LDs

Luca Monticelli

Proteins are essential components of LDs

...but what determines which proteins bind to LDs?

Luca Monticelli

Measuring protein partitioning: experimental setup

Droplet interface bilayer (DIB)

- mimic the ER-LD contact
- can incorporate proteins (but not all proteins)

Pairing

Measuring protein partitioning: experimental setup

Measuring protein partitioning: experimental setup

We tested 2 types of proteins: soluble with amphipathic helices (AH) and monotopic with hydrophobic domains (HD)

Soluble proteins with AH and monotonic proteins with HD

Soluble proteins with AH and monotonic proteins with HD

Drawbacks:

- other proteins may be present
- multiple/mixed
 AHs and HDs
- why do they go there?

KWALP partitions to nascent LDs

KWALP20 partitions strongly to the LD surface (both in DIBs and in DEVs)

Monolayer

KWALP partitions to nascent LDs

KWALP20 partitions strongly to the LD surface (both in DIBs and in DEVs)

Why does KWALP go to the LD surface?

Monolayer

Simulating KWALP distribution

Initial configuration:

- 625 TO molecules in DOPC
- bilayer (LD radius: ~10 nm)
- box size: 26 nm × 26 nm × 20 nm
- 16 or 32 peptides
- Martini 2.2 (and modifications)
- Unbiased MD, 20-40 μs

Caillon et al., Nature Comm. 2020

Simulations reproduce experimental results (qualitatively)

Luca Monticelli

Tuning oligomerization

Luca Monticelli

Tuning oligomerization

Luca Monticelli

Charge and oligomerization affect partitioning

Luca Monticelli

Charge and oligomerization affect partitioning

Luca Monticelli

Charge and oligomerization affect partitioning

Acknowledgements

V Nieto MMSB, CNRS (France)

AR Thiam, L Caillon, L Foret, A Chorlay ENS-Paris (France)

www.mad.ibcp.fr

Institut national de la santé et de la recherche médicale

