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Calculation of global stress in molecular simulation

Virial theorem:

Stress: force per area

x

y

Kinetic component:

Potential component:

Pressure tensor

A

force

Momentum transport via molecular motion

up-to-down down-to-up

forces crossing the surface

area average volume average

Clear definition. Stress is uniquely determined.

averaging 
surfaces
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A

S

B

Irving-Kirkwood-Noll (IKN) procedure

Local stress for pairwise potentials

A

buckle

Force propagating through the surface, 
but lateral position can be different.

Coarse-graining from       to 

Admal and Tadmor, J. Elast. 100, 63-143 (2010).

Propagating along cones?

average

Propagating pathway is not 
uniquely determined.

Let’s use the straight line for simplicity!

but

Minimizing sum of length, etc.
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Local stress for multi-body potentials
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3
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3
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rij ∥ fijrij ∦ fij
σαβ ̸= σβα σαβ = σβα

Goetz Lipowsky
Decomposition

Central Force 
Decomposition (CFD)three-body forces

decomposition to pairwise forces

Goetz and Lipowsky, J. Chem. Phys. 108, 7397 (1998).   Admal and Tadmor, J. Elast. (2010).

Angular momentum      not conserved                                        conserved
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Vanegas, Torres-Sànchez, and Arroyo, J. Chem. Theory Comput. 10, 691 (2014).

Pressure profile of membrane (P=- s)

Stress profile strongly depends on force decomposition!
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Central Force Decomposition (CFD) for n-body potentials

More degrees of freedom 
n(n-1)/2   >  3n - 6 in 3D

2n - 3 in 2D

CFD is not unique at n>4 in 3D (n>3 in 2D).

For large n, CFD force pairs are give by

is called covariant or irrotational component.
(Arroyo)               (Admal)

In covariant CFD, Y0 is used as a unique decomposition.

Torres-Sánchez, Vanegas, and Arroyo, J. Mech. Phys. Solids 93, 224 (2016).

Admal and Tadmor, J. Mech. Phys. Solids 93, 72 (2016).

Torres-Sánchez, Vanegas, and Arroyo, J. Mech. Phys. Solids 93, 224 (2016).

minimization of 
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Potential A1234
2

Example of the force decomposition (area of tetragon in 2D)
A1234 = A123 + A134 = A124 + A134

Voronoi
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Y1 = Y(A123 + A134) - Y( A124 + A134) 

Q: Which do you choose,  covariant CFD or Voronoi?
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Force decomposition of pairwise potentials

Case: a multibody potential expresses a sum of pairwise potentials in some limit.

Force decomposition should be

But 
covariant CFD and any other methods only based on f i
cannot give this decomposition.

HN, Phys. Rev. E 102, 053315 (2020).
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Force Center 
Decomposition Hybrid Decomposition 

Force Center Decomposition (FCD) for three-body potentials

Another decomposition conserving angular momentum

Force Center Decomposition (FCD):
Forces of a three-body potential always meets at one point.
These force pairs can be used for decomposition.

K. M. Nakagawa and HN, Phys. Rev. E 94, 053304 (2016).
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Pressure profile of membrane, again

K. M. Nakagawa and HN, Phys. Rev. E 94, 053304 (2016).

Stress profile strongly depends on force decomposition
even under the angular-momentum conservation!

But profile is always mirror-symmetric.

DPD membrane

bending potential
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Summary 1

Local stress filed is not uniquely determined
on molecular scale.

Questions:

Q1: Is molecular-scale local stress a meaningful quantity?

If yes:
Q2: How do you calculate local stress?

a. From higher resolution data
(quantum calculation for all-atom MD, All-atom for CG)

b. Following some manner (covariant CFD or others)

Q3: Do macroscopic properties depend on the decomposition? 

K. M. Nakagawa and HN, Phys. Rev. E 94, 053304 (2016).
HN, Phys. Rev. E 102, 053315 (2020).
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2. Virtual bending method to calculate     
coefficients of bending energy

l Bending rigidity 

l Saddle-splay modulus (Gaussian modulus) 

l Spontaneous curvature C0

Bending energy



second moment
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verticallateral

first moment

depending on decomposition

W. Helfrich, Physics of Defects (1981). 
I. Szleifer, D. Kramer, A. Ben-Shaul, W. M. Gelbart,
and S. A. Safran, J. Chem. Phys. 92, 6800 (2016).

moments of stress profile

Q: What’s wrong? K. M. Nakagawa and HN, Phys. Rev. E 94, 053304 (2016).

Estimation of saddle-splay modulus from stress profile

position of the force center

for lipid membrane

?

Hu, Briguglio, and Deserno, Biophys. J. 102, 1403 (2012).



Aim:

Calculating  
directly from mechanical response

without using force decomposition
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Free energy change by virtual deformation (parameter l)
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thermal-fluctuation term

This is not considered in stress profile method.
A: Second moment ≠



virtual work
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Example of virtual deformation 
(calculation of surface tension g)

affine deformation (constant volume, lateral extension)

same form as in usual method of stress difference



k and C0 also, k
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Cylindrical deformation Spherical deformation

Virtual bending deformation

Local deformation with constant curvature is available
under periodic boundary condition.
(not for longer-range interactions than length of simulation box)
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Cylindrical deformation

constant volume: a1 = 1
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variable a1 to check 
volume fluctuation effects



Spherical deformation

constant volume: a2 = 1
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Pairwise potential
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=  stress moment of central   
force decomposition
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Relation between first derivative and first stress moment

The first derivative coincides with first stress moment,
so that it is the discretization form of stress moment 
without using force decomposition. 

FCD gives the same moment, whereas GLD does not.
Angular-momentum-conservation is required 
for obtaining the right fist moment.

Slide 10: mirror-symmetry -> C0 = 0



1. meshless membrane model
no solvent
n-body potential

n ~ 20 

2. DPD membrane model
with explicit solvent
two-particle amphiphiles

23

Calculation of           by virtual bending method
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k, k are accurately estimated!
a-dependence (volume-fluctuation effects) is very small.

Undulation spectrum 
method

present method

present method

membrane-closure
method
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1. meshless membrane



Influence of membrane fluctuations
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s
bending rigidity

Variance terms are larger at larger membrane,
but the difference are cancelled with other terms
so that values of k, k are unchanged.
Variance terms are far from negligible.



a= 100kBT
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Simple DPD liquid (no membrane, i.e.,                )

a-dependence is huge.

calculated for the region

Virtual bending method to calculate bending rigidity, saddle-splay modulus, and
spontaneous curvature of thin fluid membrane

Hiroshi Noguchi⇤

Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan
(Dated: May 27, 2021)

A method to calculate the bending rigidity , saddle-splay modulus ̄, and spontaneous curvature
C0 of a fluid membrane is proposed. Virtual work for the bending deformations into cylindrical
and spherical shapes is calculated for a flat membrane. This method does not require a force
decomposition, unlike the existing stress-profile method. The first derivative of the deformation
gives C0 and is a discrete form of the first moment of the stress profile. The second derivatives
give  and ̄, and include the variance terms of the first derivatives, which are not accounted for
in the stress-profile method. This method is examined for a solvent-free meshless membrane model
and a dissipative-particle-dynamics two-bead amphiphilic molecular model. It is concluded that 
and ̄ of a thin membrane can be accurately calculated, whereas for a thick membrane or one with
an explicit solvent, a further extension to include the volume-fluctuation e↵ects is required for an
accurate estimation. The amplitude of the volume-fluctuation e↵ects can be evaluated using the
parameter dependence in the present method.

I. INTRODUCTION
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 = 0 or ̄ = 0 is obtained at ↵1,↵2 = 0.7–0.9. Am-
phiphilic molecules self-assemble into various structures
including spherical and worm-like micelles, vesicles, and
bicontinuous phases [1, 2]. Among them, a bilayer mem-
branes have been intensively studied because they are a
basic structure of biomembranes. Biomembranes are typ-
ically in a fluid phase, and their shapes are regulated by
many types of proteins via bending deformation [3–7].
Because lipid membranes maintain an almost constant
area, the bending deformation is the most important fac-
tor in understanding the biomembrane morphology.

⇤ noguchi@issp.u-tokyo.ac.jp

The free energy of a fluid membrane is given by

F =

Z h
2
(C1 + C2 � C0)

2 + ̄C1C2 + �it
i
dA, (7)

where C1 and C2 are the principal curvatures, and it
is integrated over a membrane surface with an area of
A [2, 8, 9]. This denotes the energy expansion of the cur-
vatures to the second order, with coe�cients of the bend-
ing rigidity , saddle-splay modulus or Gaussian curva-
ture modulus ̄, and spontaneous curvature C0. �it is
the internal (bare) surface tension conjugated to the real
membrane area A [10–13]. The saddle-splay modulus ̄
does not contribute to the shape transformation of a vesi-
cle with a fixed topology, because of the Gauss–Bonnet
theorem,

H
C1C2dA = 4⇡(1� g), where g is the genus of

the vesicle.
The bending rigidity  can be estimated by several

methods based on the fluctuation analysis or mechanical
response. The fluctuation spectrum of a flat membrane,
h|h(q)|2i = kBT/(�q2 + q4), is the most widely used to
calculate  in simulations [2, 14–16]. � is the mechani-
cal (frame) surface tension conjugated to the projected
membrane area Axy = LxLy, where Lx and Ly are the
side lengths of the simulation box and the membrane
is normal to the z direction [12]. Moreover,  can be
calculated from the fluctuation spectra of spherical [17–
21] and cylindrical [16, 22–24] membranes. For a lipid
bilayer,  can also be calculated from fluctuations in
lipid orientation [25]. Experimentally,  is the most com-
monly measured by a tubular (tether) membrane exten-
sion from a vesicle using the force strength and surface
tension [21, 26–28]. In simulations,  can be calculated
from the force strength and radius of a cylindrical mem-
brane [16, 29]. Moreover,  can also be calculated from
the anisotropic lateral stress of a buckled membrane in
simulations [30, 31].
The spontaneous curvature C0 can be calculated from

the force dependence on the radius of a cylindrical mem-
brane [16] and the curvature of a membrane strip [16, 32].

soft repulsion
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2. DPD bilayer membrane

Right values are obtained at a1 = a2 = 1.0 for cutoff of membrane interface,
but a-dependence is terrible.
The method itself looks fine but one more thing is required for accurate estimation.

k=18kBTundulation method:

membrane-
solvent interface

membrane-
solvent interface
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Summary 2

For meshless membranes, bending rigidity and 
saddle-splay modulus are accurately calculated 
by virtual bending method.
For thick membrane with explicit solvent, 
further extension is required for accurate estimation.

Questions:

Q3: Do macroscopic properties depend on the decomposition? 
First stress moment: (-kC0) independent of decomposition
Second moment: (not     ) dependent on decomposition 

Q4: How are the volume fluctuations included in this method?

Q5: Is the virtual deformation method applicable to other 
deformations such as twisting? 

HN, Phys. Rev. E 102, 053315 (2020).
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Summary of Questions

Q1: Is molecular-scale local stress a meaningful quantity?

If yes:
Q2: How do you calculate local stress?

a. From higher resolution data
(quantum calculation for all-atom MD, All-atom for CG)

b. Following some manner (covariant CFD or others)

Q3: Do macroscopic properties depend on the decomposition?

Q4: How are the volume fluctuations included in this method?

Q5: Is the virtual deformation method applicable to other 
deformations such as twisting? 

Thank you for your attention &

Looking forward for discussion!

https://noguchi.issp.u-tokyo.ac.jp/rabit_ves.mp4


