Stress and confinement in shaping lipid membranes

Margarita Staykova Department of Physics, Durham University, UK

KITP Thin films 2021

Content

1. Friction dominated response of fluid supported membranes to lateral stretch

2. Hydraulic fracturing of membrane adhesion

3. Propulsion of GUVs enclosing with active particles

Membranes are coupled to dynamic structures

Stretching experiments

bi-axial

uni-axial

Membrane buckling upon compression PR

(substrates with hydrophobic pinning points)

PNAS 108 (2011); PRL 110 (2013); Soft matter 32 (2017)

$$f = \frac{K_s}{2} \left(\phi^{+^2} + \phi^{-^2} \right) + \frac{\kappa}{2} H^2 + U(t)$$
Elastic Bending
$$K_s \quad \kappa$$
Bilayer-substrate

Kosmalska et al., Nat Comm 2015

Pores upon bi-axial stretch

(hydrophilic substrates)

 $\dot{\varepsilon}{\sim}~0.05~\%~s^{-1}$

 $\dot{\varepsilon}{\sim}~0.4~\%~s^{-1}$

Characteristic length-scales

Characteristic length over which tension propagates:

 bR_{pore}^3e

- Stretching modulus $K_s = 0.1 \text{ Nm}^{-1}$ b- friction coefficient
- When R_{patch}>L_c multiple pores open

Edge tension **y** = 10 pN Takes tens of hours to reseal the pores

Sliding is opposed to dynamic friction

Elliptic pores upon *uni-axial* stretch. Mechanism?

 $\dot{\epsilon} \sim 0.3 \% s^{-1}$

 $\dot{\varepsilon}{\sim}~0.01~\%~s^{-1}$

Akin to elastic fracture of solid materials (hydrogels)

(a)

Guo et al., JMPC '18

Stress concentration around holes in solid materials

Céline Dinet

Alejandro Torres-Sánchez

Nat Mat 2015

Hydraulic Fracturing at Membrane interfaces

Morris et al., Biophys J 1999

Dumortier et al., Science 2019

- Magnitude of the osmotic shock: (25-100mM)
- Linker density: 0.2 4mol %
- Linker type: NaV, DNA, E-cadherins

- Vesicle-SLBplane
- Vesicle-Vesicle plane

Hydraulic fractures at membrane adhesion contacts

Lipid Membrane

Neutravidin

Belbs- by fast redistribution of linkers

Mechanism

Water partial pressure pOsmotic pressure π Mechanical pressure $P = p + \pi$

No hydraulic confinement

Some hydraulic confinement

Model

Ingredients:

- Mechanics of fluid membrane in/out-of-plane.
- Water transport
- Osmolyte transport
- Adhesion molecule dynamics (advection, reaction, diffusion)

- Size of vesicle/patch
- Number of linkers
- Osmolarity and magnitude of shock
- Membrane viscosity
- Membrane permeability
- Length of bonds
- Stiffness of bonds

 $\mathbf{\nabla}$

- Membrane friction
- Darcy permeability of interstitial space
- Diffusivity of osmolytes in interstitial space

Fast dynamics at membrane-membrane interface

Time lapse: 20s

'Endocytosis'

Higher linker density Pulling apart the two vesicles

? Passive mechanism for shortening of cell contacts

.. a relevant mechanism for the reduction of junctional membrane area during tissue elongation

Lucas le Nagard

Wilson Poon

Swimming vesicles powered by bacteria

Koester, PNAS'03

Bacteria push lipid tubes

Mineral oil

Tense vesicles

E. coli in POPC GUVs

Low membrane tension allows bacteria to extrude tubes

Vesicles propelled by bacteria

(accelerated 10x)

Typical speed of a GUV propelled by one bacteria : 1 μm.s⁻¹

Tube act as a flagellum

Lipid tube act as a flagellum for the propulsion of vesicle

Tube characteristics correspond to those of the flagella bundle:

- Rotation speed $\sim 60 100$ Hz
- Helix pitch $\sim 2.3 \ \mu m$
- Diameter ~ 0.4 μm

Propulsive force

Force-free swimmer at low Reynolds number: propulsive force *F* exactly balanced by drag force on the swimmer.

$$F = (\xi_{GUV} + N_b \xi_b) v$$

$$N_b = 1, n = 31$$

 $\langle F \rangle = (1.6 \pm 0.5) \times 10^{-13} \text{N}$

3x smaller than thrust force in bulk

 $\bar{F} = 1.3 \times 10^{-13} N_b N$

Each additional cell in the tube contributes to increasing the resulting force

Questions

1. Why are tubes so thin?

Symmetric membrane, no spontaneous curvature

$$f = 2\pi\sqrt{2\kappa\sigma}$$
$$R = \sqrt{\frac{\kappa}{2\sigma}}$$

 $f \sim 4.5^{-13} \text{ N}$ Bacteria thrust force $\kappa \sim 10^{-19}$ J Bending rigidity of POPC membrane

 $R_{min} \sim 1.4 \ \mu m$

2. Stability of tubes with large in plane shear?

swimming plane

3. Swimming of bacteria in membrane confinement?

- Vibrio species with membrane sheath
- Intracellular pathogens, such as • Salmonella, deforming cell membranes

