Preprogramming and Reprogramming Shape Morphing of Liquid Crystal Elastomer Membranes

Shu Yang

Materials Science & Engineering University of Pennsylvania

Penn

Programmed Actuation in Liquid Crystal Elastomers

Modes, C. D. and Warner, M, Phys. Rev E 2011, 84, 021711

L. Liu, L. Zhang, Y. Xu, C. Gotsman, S. J. Gortler, Computer Graphics Forum, 27, 1495 (2008).

Combination of Gaussian Curvatures

Penn

Yu Xia, Xinyue Zhang, Hillel Aharoni, Randall Kamien, SY, PNAS 2018, 115 (28) 7206

Repeated actuation > 50 times

Bernn Wang, Yuchen; Dang, Alei; Zhang, Zhifeng; Yin, Rui; Gao, Yuchong; Feng, Liang and Yang, Shu*, Adv. Mater. 2020, 202004270

♣Penn

 $\lambda_{\rm o} = (n_{\rm o} + n_{\rm e})P/2$ $\lambda = npsin\theta$

n: average refractive index p: helical pitch

θ: reflection angle with respect to surface

Stretchable side-chain CLCEs H. Finkelmann, et al., Adv. Mater. 13, 1069 (2001)

small molecule LCs R. Ozaki, et al., Appl. Phys. Lett. 92, 163304 (2008)

Na Conco Acadar a Deense Academy any , ije inal Defense Acule H.CE tional Defense Ac

- LC small molecules self-organize in a long-range order (good uniformity);
- It is not easy to create a uniform monodomain in LCEs
 - monomomers and oligomers are much more viscous to infiltrate into a LC cell
- For a broadband switch, a large strain is needed, but the film is limited by the geometric confinement
 - a minimum tensile strain of 75 % or a compressive strain of 42 % along the on-axis is necessary to switch between 400 and 700 nm

It will be ideal to

- 1) Create a uniform CLCE and
- 2) CLCE has large biaxial Poisson's ratios

Different Types of LC Polymers MCLCE can be considered effectively isotropic in the transverse plane (xy-plane) Main Side chain chain side-on end-on 1 - vVI v x $\varepsilon_z = -k_t(\varepsilon_x + \varepsilon_y) = -\frac{2v_2}{1 - v_2}(\varepsilon_x + \varepsilon_y) = \Delta \lambda / \lambda_o$ Decreasing LC-backbone coupling strength Mistry, D. et al. Nat. Commun. 9, 5095 (2018) $\lambda_{\rm o} = (n_{\rm o} + n_{\rm e})P/2$ n_0 and n_e are the ordinary and extraordinary · Side-chain CLCEs have isotropic backbones refractive indices of LCs, Main-chain CLCEs (MCLCEs) could have a large elasticity respectively anisotropy between the direction of the helix and the plane normal *enn*

