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L>>l   (~200 nm silicone at 300K)
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Heat transport in bulk materials : 

phenomenological approach

𝒬 = −𝜆
𝑑𝑇

𝑑𝑥

𝜕𝑒(𝑥, 𝑡)

𝜕𝑡
𝑆𝑑𝑥 = 𝑆[𝒬 𝑥 − 𝒬 𝑥 + 𝑑𝑥 ] ≈ −𝑆𝑑𝑥

𝑑𝒬

𝑑𝑥

𝜕𝑇(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝑑2𝑇

𝑑𝑥2

x x+dx



Heat transport in bulk materials : 

random walk model

x x+dxx-dx

p(x,t+𝛿𝑡) = 𝛼 p(x+dx,t) + 𝛽 p(x−dx,t) + 1 − 𝛼 − 𝛽 p(x)

Probability to move to the right (resp. left): 𝛼 (resp. 𝛽)

Assuming 𝛼 =𝛽 (non asymmetry) and making Taylor expansions  

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2𝑝

𝜕𝑥2
𝐷 = 𝛼

𝑑𝑥2

𝛿𝑡
with

p(x,t)=
1

4𝜋𝐷𝑡
𝑒−

𝑥2

4𝐷𝑡

p(x,t)

x

𝑀𝑛 ≡ න p(x,t)𝑥𝑛𝑑𝑥 < 𝐶
(all momentum are bounded)

𝑀2 ≡ 𝑣𝑎𝑟 = 2𝐷𝑡



How heat spreads in many body systems?
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Gaussian

(diffusive)

Anomalous

(sub/superdiffusive)

Nanopartilcle network

(Fourier) (Levy)Diffusive or not diffusive?



● Near-field heat transport in many body systems 

● Landaue formalism, summation rules and supercurrent

● Heat  transport as a generalized random walk

● Identifying the regimes of transport by analyzing the thermal conductance 

scaling

● Heat  transport  in diluted systems

● Heat  transport in dense systems

● Open problems and concluding remarks

Outline
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Heat transfer in many-body systems

4

Energy balance (neglecting the background contribution)

𝑑𝑇𝑖
𝑑𝑡

=

𝑗≠𝑖

℘𝑗→𝑖 𝑇1, … , 𝑇𝑁

Ti

T4

T1

Tj

℘𝑗→𝑖

℘𝑗→𝑖 = න

0

∞

[𝜃 𝑇𝑗 , 𝜔 ℑ𝑗𝑖(𝜔) − 𝜃(𝑇𝑖 , 𝜔)ℑ𝑖𝑗 𝜔 ]
𝑑𝜔

2𝜋

Using the Landauer formalism (small objects)

ℑ𝑗𝑖 𝜔 =
4

3
(
𝜔

𝑐
)4𝐼𝑚 𝑇𝑟[𝜶𝒊ℊ 𝒊𝒋

𝜶𝒋−𝜶𝒋
†

𝟐𝒊
ℊ 𝒊𝒋

† ]

with the transmission coefficient (arbitrary non-reciprocal materials)

Full GreenPolarizability

PRL 107, 114301(2011), RMP 93, 025009 (2021)



Summation rules in many-body systems
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At equilibrium (𝑇𝑖=𝑇𝑗=T=Cte)

σ𝑗≠𝑖℘𝑗→𝑖=0

න

0

∞

𝜃 𝑇, 𝜔 

𝑗≠𝑖

ℑ𝑗𝑖 𝜔 −

𝑗≠𝑖

ℑ𝑖𝑗 𝜔
𝑑𝜔

2𝜋
= 0

Hence

This relation holds for any temperature



𝑗≠𝑖

ℑ𝑗𝑖 𝜔 =

𝑗≠𝑖

ℑ𝑖𝑗 𝜔

In 2 body systems

ℑ12 𝜔 =ℑ21 𝜔

∀ 𝑖=1, 𝑁

PRL 118, 173902 (2017)



Supercurrent in non-reciprocal systems
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At equilibrium

℘𝑒𝑞
𝑗→𝑖 = න

0

∞

𝜃 𝑇𝑖 , 𝜔 [ℑ𝑗𝑖 𝜔 − ℑ𝑖𝑗 𝜔 ]
𝑑𝜔

2𝜋

If

a supercurrent can exist

In 2 body systems

ℑ𝑗𝑖 𝜔 ≠ ℑ𝑖𝑗 𝜔

℘𝑒𝑞
1→2 = ℘𝑒𝑞

2→1 = 0 No supercurrent

According to summation rules, the net power received by each body

σ𝑗℘
𝑒𝑞

𝑗→𝑖=0 No heating/cooling

(ℑ12=ℑ21)



Heat transport as a generalized random walk

4

Close to the thermal equilibrium

𝑑𝑇𝑖

𝑑𝑡
= σ𝑗≠𝑖 𝐺(𝑟𝑖 , 𝑟𝑗)(𝑇𝑗-𝑇𝑖)

In the continuous limit

𝑑𝑇(𝑟, 𝑡)

𝑑𝑡
= න

𝑉

𝐺 𝑟, 𝑟′ 𝑇 𝑟′, 𝑡 𝑑𝑟′ −𝑇(𝑟, 𝑡) න

𝑉

𝐺 𝑟, 𝑟′ 𝑑𝑟′

which is analog to the Chapman-Kolmogorov master equation

𝑑𝑇(𝑟, 𝑡)

𝑑𝑡
= න

𝑉

𝑝 𝑟, 𝑟′
𝑇 𝑟′, 𝑡

𝜏(𝑟)
𝑑𝑟′ −

𝑇 𝑟, 𝑡

𝜏(𝑟)

𝑝 𝑟, 𝑟′ = 𝐺 𝑟, 𝑟′ (න

𝑉

𝐺 𝑟, 𝑟′ 𝑑𝑟′)−1 𝜏(𝑟)= 𝑉) 𝐺 𝑟, 𝑟′ 𝑑𝑟′)−1

Probablility distribution Rate of jump 

T3

T4

T1

T2

𝐺34

𝐺 𝑟𝑖 , 𝑟𝑗 = lim
𝑇𝑖−𝑇𝑗 →0

1

𝑇𝑖 − 𝑇𝑗
න

0

∞

𝜃 𝑇𝑖 , 𝜔 − 𝜃(𝑇𝑗 , 𝜔) ℑ𝑖𝑗(𝜔)
𝑑𝜔

2𝜋



Heat transport regimes vs conductance scaling
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Many body heat transfer in the dipolar approximation

di <min(Tj )

)/( jBT Tkc
j

=

Small objects in interaction N fluctuating dipoles in mutual

interaction 

6

i

V

ii

S

i
iii dVEjdStr

dt

dT
VC

ii

 =−= ..,(

Energy balance:

Poynting theorem

T2

d4



Local field Dipole moments
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Using the decomposition 
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Absorbed power :
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𝐸𝑖 = 𝜔 2𝜇0

𝑗

ℊ0(𝑟𝑖 , 𝑟𝑗)𝑝𝑗 𝑝𝑖
𝑖𝑛𝑑 = 휀0𝛼𝑖

𝑗

ℊ0(𝑟𝑖 , 𝑟𝑗)𝑝𝑗

PRL, 107, 114301 (2011), PRB, 88, 104307 (2013) 

𝑝𝑖(𝜔)𝐸
†
𝑖 (𝜔) = 𝜔 2𝜇0 

𝑗𝛼𝛽𝑘𝛾

𝑀𝑖𝑗, 𝛼𝛽
𝑝𝑗, 𝛽

𝑓𝑙𝑢𝑐 𝜔 𝑝𝑘, 𝛾
𝑓𝑙𝑢𝑐 †

𝜔 𝑁𝑘𝑖, 𝛾𝛼

Many-body heat transfer in the dipolar approximation



Using the fluctuation dissipation theorem:

PRL, 107, 114301 (2011)
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𝑝𝑗, 𝛽
𝑓𝑙𝑢𝑐 𝜔 𝑝𝑘, 𝛾

𝑓𝑙𝑢𝑐 †
𝜔′ = ℏ휀0𝛿𝑗𝑘𝛿𝛽𝛾𝛿 𝜔 − 𝜔′ 𝐼𝑚 𝛼𝑗 [1 + 2𝑛(𝜔, 𝑇𝑗)]

with

𝑛 𝜔, 𝑇 = [𝑒
ℏ𝜔
𝑘𝐵𝑇 − 1]−1

℘𝑖 = 3න

0

∞
𝑑𝜔

2𝜋


𝑗

4

3

𝜔4

𝑐4
𝐼𝑚(𝛼𝑖)𝐼𝑚(𝛼𝑗)𝐼𝑚(𝑡𝑟 ℊ𝑖𝑗ℊ𝑖𝑗

† ) 𝜃 𝑇𝑖 , 𝜔 − 𝜃(𝑇𝑗 , 𝜔)

ℑ𝑖𝑗(𝜔)

Many body heat transfer in the dipolar approximation



Heat transport in diluted 1D systems
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superdiffusion
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PRL, 107, 114301 (2011)

PRL, 111, 174301 (2013)

SiC

R=100 nm

T=300 K

Long range correlations due to phonon-polariton (i.e. collective modes)

1 < 𝛾 = 2 < 3



Heat transport in diluted random 3D systems

Averaging

over 250 realizations

Clusters of SiC nanoparticles

PRL, 111, 174301, 2013

3< 𝛾 < 5 superdiffusion

Volume fraction:
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Heat transport in dense systems
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From the scattering theory: −−++++ ++= BbB EEE 111

++−−−− ++= BCB EEE 222

z

i

iwhere, and are the transmission and reflection operators

…

PRB, 95,  205404, 2017



Transition to ballistic regime

Superdiffusive (TM dominates) Ballistic (TE dominates)

PRB 97, 035423 (2018)

SiC slabs (200 nm thick) 
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Diluted (d=500 nm) Dense (d=5 nm)



Diverging conductivity in 2D systems

𝜙 = 𝜅
Δ𝑇

𝐿

SiC nanoparticles

R=100 nm 

𝐺 = 𝑂(
log(𝐿)

𝐿
) no algebraic decay of the pdf

Similar to phononic conduction

in 2d systems of oscillators 

coupled through anharmonic

interactions (S. Lepri et al., 

Phys. Rep. 377, 1, 2003)

𝜅 = 𝐺
𝐿

𝑁𝜋𝑅2
with

𝑂(log 𝐿 )
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Summary/prospects

Anomalous (non-gaussian) heat transport regimes in many body systems : 

Superdiffusive regime in diluted 1D and 3D systems due to collective behavior

Transition to a ballistic regime in dense systems due to the TE modes 

contribution

19

Role plays by the non-local response on the transition?

Diverging (logarithmic) conductivity in 2D systems

Unlike phononic systems there is not yet rigorous explanation for this

behavior… 

How to deal with large many-body systems?

Toward a hydrodynamic description of transport ( round table 06/30)

Transport regimes in non-reciprocal systems?
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